Search Results

Now showing 1 - 6 of 6
  • Item
    Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells
    (New York, NY : Elsevier, 2017) Maitz, Manfred F.; Sperling, Claudia; Wongpinyochit, Thidarat; Herklotz, Manuela; Werner, Carsten; Seib, F. Philipp
    Many nanoparticles are designed for use as potential nanomedicines for parenteral administration. However, emerging evidence suggests that hemocompatibility is important, but is highly particle- and test-bed dependent. Thus, knowledge of bulk material properties does not predict the hemocompatibility of uncharacterized nanoparticles, including silk nanoparticles. This study compares the hemocompatibility of silk versus silica nanoparticles, using whole human blood under quasi-static and flow conditions. Substantial hemocompatibility differences are noted for some nanoparticles in quasi-static versus dynamic studies; i.e., the inflammatory response to silk nanoparticles is significantly lower under flow versus quasi-static conditions. Silk nanoparticles also have very low coagulant properties - an observation that scales from the macro- to the nano-level. These nanoparticle hemocompatibility studies are complemented by preliminary live cell measurements to evaluate the endocytosis and trafficking of nanoparticles in human blood cells. Overall, this study demonstrates that nanoparticle hemocompatibility is affected by several factors, including the test bed design.
  • Item
    A three-dimensional ex vivo tri-culture model mimics cell-cell interactions between acute myeloid leukemia and the vascular niche
    (Pavia : Ferrata Storti Foundation, 2017) Bray, Laura J.; Binner, Marcus; Körner, Yvonne; von Bonin, Malte; Bornhäuser, Martin; Werner, Carsten
    Ex vivo studies of human disease, such as acute myeloid leukemia, are generally limited to the analysis of two-dimensional cultures which often misinterpret the effectiveness of chemotherapeutics and other treatments. Here we show that matrix metalloproteinase-sensitive hydrogels prepared from poly(ethylene glycol) and heparin functionalized with adhesion ligands and pro-angiogenic factors can be instrumental to produce robust three-dimensional culture models, allowing for the analysis of acute myeloid leukemia development and response to treatment. We evaluated the growth of four leukemia cell lines, KG1a, MOLM13, MV4-11 and OCI-AML3, as well as samples from patients with acute myeloid leukemia. Furthermore, endothelial cells and mesenchymal stromal cells were co-seeded to mimic the vascular niche for acute myeloid leukemia cells. Greater drug resistance to daunorubicin and cytarabine was demonstrated in three-dimensional cultures and in vascular co-cultures when compared with two-dimensional suspension cultures, opening the way for drug combination studies. Application of the C-X-C chemokine receptor type 4 (CXCR4) inhibitor, AMD3100, induced mobilization of the acute myeloid leukemia cells from the vascular networks. These findings indicate that the three-dimensional tri-culture model provides a specialized platform for the investigation of cell-cell interactions, addressing a key challenge of current testing models. This ex vivo system allows for personalized analysis of the responses of patients’ cells, providing new insights into the development of acute myeloid leukemia and therapies for this disease.
  • Item
    Retargeting of UniCAR T cells with an in vivo synthesized target module directed against CD19 positive tumor cells
    ([Erscheinungsort nicht ermittelbar] : Impact Journals LLC, 2017) Bachmann, Dominik; Aliperta, Roberta; Bergmann, Ralf; Feldmann, Anja; Koristka, Stefanie; Arndt, Claudia; Loff, Simon; Welzel, Petra; Albert, Susann; Kegler, Alexandra; Ehninger, Armin; Cartellieri, Marc; Ehninger, Gerhard; Bornhäuser, Martin; von Bonin, Malte; Werner, Carsten; Pietzsch, Jens; Steinbach, Jörg; Bachmann, Michael
    Recent treatments of leukemias with T cells expressing chimeric antigen receptors (CARs) underline their impressive therapeutic potential but also their risk of severe side effects including cytokine release storms and tumor lysis syndrome. In case of cross-reactivities, CAR T cells may also attack healthy tissues. To overcome these limitations, we previously established a switchable CAR platform technology termed UniCAR. UniCARs are not directed against typical tumor-associated antigens (TAAs) but instead against a unique peptide epitope: Fusion of this peptide epitope to a recombinant antibody domain results in a target module (TM). TMs can cross-link UniCAR T cells with tumor cells and thereby lead to their destruction. So far, we constructed TMs with a short half-life. The fast turnover of such a TM allows to rapidly interrupt the treatment in case severe side effects occur. After elimination of most of the tumor cells, however, longer lasting TMs which have not to be applied via continous infusion would be more convenient for the patient. Here we describe and characterize a TM for retargeting UniCAR T cells to CD19 positive tumor cells. Moreover, we show that the TM can efficiently be produced in vivo from producer cells housed in a sponge-like biomimetic cryogel and, thereby, serving as an in vivo TM factory for an extended retargeting of UniCAR T cells to CD19 positive leukemic cells.
  • Item
    Limbal stromal cells derived from porcine tissue demonstrate mesenchymal characteristics in vitro
    (London : Nature Publishing Group, 2017) Fernández-Pérez, Julia; Binner, Marcus; Werner, Carsten; Bray, Laura J.
    Limbal stromal cells (LSCs) from the human ocular surface display mesenchymal stromal cell characteristics in vitro. In this study, we isolated cells from the porcine limbal stroma (pLSCs), characterised them, and evaluated their ability to support angiogenesis and the culture of porcine limbal epithelial stem cells (pLESCs). The isolated cells adhered to plastic and grew in monolayers in vitro using serum-supplemented or serum-free medium. The pLSCs demonstrated expression of CD29, and cross-reactivity with anti-human CD45, CD90, CD105, CD146, and HLA-ABC. However, expression of CD105, CD146 and HLA-ABC reduced when cultured in serum-free medium. PLSCs did not undergo adipogenic or osteogenic differentiation, but differentiated towards the chondrogenic lineage. Isolated cells were also co-cultured with human umbilical vein endothelial cells (HUVECs) in star-shaped Poly(ethylene glycol) (starPEG)-heparin hydrogels to assess their pericyte capacity which supported angiogenesis networks of HUVECs. PLSCs supported the three dimensional HUVEC network for 7 days. The isolated cells were further growth-arrested and evaluated as feeder cells for pLESC expansion on silk fibroin membranes, as a potential carrier material for transplantation. PLSCs supported the growth of pLESCs comparably to murine 3T3 cells. In conclusion, although pLSCs were not completely comparable to their human counterpart, they display several mesenchymal-like characteristics in vitro.
  • Item
    Bone marrow niche-mimetics modulate HSPC function via integrin signaling
    (London : Nature Publishing Group, 2017) Kräter, Martin; Jacobi, Angela; Otto, Oliver; Tietze, Stefanie; Müller, Katrin; Poitz, David M.; Palm, Sandra; Zinna, Valentina M.; Biehain, Ulrike; Wobus, Manja; Chavakis, Triantafyllos; Werner, Carsten; Guck, Jochen; Bornhauser, Martin
    The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
  • Item
    Cryogel-supported stem cell factory for customized sustained release of bispecific antibodies for cancer immunotherapy
    (London : Nature Publishing Group, 2017) Aliperta, Roberta; Welzel, Petra B.; Bergmann, Ralf; Freudenberg, Uwe; Berndt, Nicole; Feldmann, Anja; Arndt, Claudia; Koristka, Stefanie; Stanzione, Marcello; Cartellieri, Marc; Ehninger, Armin; Ehninger, Gerhard; Werner, Carsten; Pietzsch, Jens; Steinbach, Jörg; Bornhäuser, Martin; Bachmann, Michael P.
    Combining stem cells with biomaterial scaffolds provides a promising strategy for the development of drug delivery systems. Here we propose an innovative immunotherapeutic organoid by housing human mesenchymal stromal cells (MSCs), gene-modified for the secretion of an anti-CD33-anti-CD3 bispecific antibody (bsAb), in a small biocompatible star-shaped poly(ethylene glycol)-heparin cryogel scaffold as a transplantable and low invasive therapeutic machinery for the treatment of acute myeloid leukemia (AML). The macroporous biohybrid cryogel platform displays effectiveness in supporting proliferation and survival of bsAb-releasing-MSCs overtime in vitro and in vivo, avoiding cell loss and ensuring a constant release of sustained and detectable levels of bsAb capable of triggering T-cell-mediated anti-tumor responses and a rapid regression of CD33 + AML blasts. This therapeutic device results as a promising and safe alternative to the continuous administration of short-lived immunoagents and paves the way for effective bsAb-based therapeutic strategies for future tumor treatments.