Search Results

Now showing 1 - 10 of 23
Loading...
Thumbnail Image
Item

Sperm Micromotors for Cargo Delivery through Flowing Blood

2020, Xu, Haifeng, Medina-Sánchez, Mariana, Maitz, Manfred F., Werner, Carsten, Schmidt, Oliver G.

Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.

Loading...
Thumbnail Image
Item

Chemokine‐Capturing Wound Contact Layer Rescues Dermal Healing

2021, Schirmer, Lucas, Atallah, Passant, Freudenberg, Uwe, Werner, Carsten

Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.

Loading...
Thumbnail Image
Item

Amphiphilic Copolymers for Versatile, Facile, and In Situ Tunable Surface Biofunctionalization

2021, Ruland, André, Schenker, Saskia, Schirmer, Lucas, Friedrichs, Jens, Meinhardt, Andrea, Schwartz, Véronique B., Kaiser, Nadine, Konradi, Rupert, MacDonald, William, Helmecke, Tina, Sikosana, Melissa K.L.N., Valtin, Juliane, Hahn, Dominik, Renner, Lars D., Werner, Carsten, Freudenberg, Uwe

Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene-maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water-soluble but strongly affine for surfaces. Fine-tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials-which is why they are referred to as "anchor polymers" (APs)-and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives-including cytokine-complexing glycosaminoglycans, cell-adhesion-mediating peptides and antimicrobials-APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo- and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof-of-concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP-functionalized surfaces.

Loading...
Thumbnail Image
Item

Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model

2020, Hassan, Ghada, Forsman, Nina, Wan, Xing, Keurulainen, Leena, Bimbo, Luis M., Stehl, Susanne, van Charante, Frits, Chrubasik, Michael, Prakash, Aruna S., Johansson, Leena-Sisko, Mullen, Declan C., Johnston, Blair F., Zimmermann, Ralf, Werner, Carsten, Yli-Kauhaluoma, Jari, Coenye, Tom, Saris, Per E.J., Österberg, Monika, Moreira, Vânia M.

Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials. © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures

2021, Ucar, Buket, Kajtez, Janko, Foidl, Bettina M., Eigel, Dimitri, Werner, Carsten, Long, Katherine R., Emnéus, Jenny, Bizeau, Joëlle, Lomora, Mihai, Pandit, Abhay, Newland, Ben, Humpel, Christian

Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies. © 2020

Loading...
Thumbnail Image
Item

Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels—Expanding the Physicochemical Parameter Space of Biohybrid Materials

2021, Hahn, Dominik, Sonntag, Jannick M., Lück, Steffen, Maitz, Manfred F., Freudenberg, Uwe, Jordan, Rainer, Werner, Carsten

Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

Cell-Instructive Multiphasic Gel-in-Gel Materials

2020, Kühn, Sebastian, Sievers, Jana, Stoppa, Aukha, Träber, Nicole, Zimmermann, Ralf, Welzel, Petra B., Werner, Carsten

Developing tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell-instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue- and organ-specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel-in-gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength

2020, Hosseini, Kamran, Taubenberger, Anna, Werner, Carsten, Fischer-Friedrich, Elisabeth

To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial–mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.

Loading...
Thumbnail Image
Item

The innate immune response of self-assembling silk fibroin hydrogels

2021, Gorenkova, Natalia, Maitz, Manfred F., Böhme, Georg, Alhadrami, Hani A., Jiffri, Essam H., Totten, John D., Werner, Carsten, Carswell, Hilary V. O., Seib, F. Philipp

Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses. This journal is

Loading...
Thumbnail Image
Item

Tuning the Local Availability of VEGF within Glycosaminoglycan-Based Hydrogels to Modulate Vascular Endothelial Cell Morphogenesis

2020, Limasale, Yanuar Dwi Putra, Atallah, Passant, Werner, Carsten, Freudenberg, Uwe, Zimmermann, Ralf

Incorporation of sulfated glycosaminoglycans (GAGs) into cell-instructive polymer networks is shown to be instrumental in controlling the diffusivity and activity of growth factors. However, a subtle balance between local retention and release of the factors is needed to effectively direct cell fate decisions. To quantitatively unravel material characteristics governing these key features, the GAG content and the GAG sulfation pattern of star-shaped poly(ethylene glycol) (starPEG)–GAG hydrogels are herein tuned to control the local availability and bioactivity of GAG-affine vascular endothelial growth factor (VEGF165). Hydrogels containing varying concentrations of heparin or heparin derivatives with different sulfation pattern are prepared and thoroughly characterized for swelling, mechanical properties, and growth factor transport. Mathematical models are developed to predict the local concentration and spatial distribution of free and bound VEGF165 within the gel matrices. The results of simulation and experimental studies concordantly reveal how the GAG concentration and sulfation pattern determine the local availability of VEGF165 within the cell-instructive hydrogels and how the factor—in interplay with cell-instructive gel properties—determines the formation and spatial organization of capillary networks of embedded human vascular endothelial cells. Taken together, this study exemplifies how mathematical modeling and rational hydrogel design can be combined to pave the way for precision tissue engineering. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim