Search Results

Now showing 1 - 10 of 14
  • Item
    Strain induced power enhancement of far-UVC LEDs on high temperature annealed AlN templates
    (Melville, NY : American Inst. of Physics, 2023) Knauer, A.; Kolbe, T.; Hagedorn, S.; Hoepfner, J.; Guttmann, M.; Cho, H.K.; Rass, J.; Ruschel, J.; Einfeldt, S.; Kneissl, M.; Weyers, M.
    High temperature annealed AlN/sapphire templates exhibit a reduced in-plane lattice constant compared to conventional non-annealed AlN/sapphire grown by metalorganic vapor phase epitaxy (MOVPE). This leads to additional lattice mismatch between the template and the AlGaN-based ultraviolet-C light emitting diode (UVC LED) heterostructure grown on these templates. This mismatch introduces additional compressive strain in AlGaN quantum wells resulting in enhanced transverse electric polarization of the quantum well emission at wavelengths below 235 nm compared to layer structures deposited on conventional MOVPE-grown AlN templates, which exhibit mainly transverse magnetic polarized emission. In addition, high temperature annealed AlN/sapphire templates also feature reduced defect densities leading to reduced non-radiative recombination. Based on these two factors, i.e., better outcoupling efficiency of the transverse electric polarized light and an enhanced internal quantum efficiency, the performance characteristic of far-UVC LEDs emitting at 231 nm was further improved with a cw optical output power of 3.5 mW at 150 mA.
  • Item
    Advances in electron channelling contrast imaging and electron backscatter diffraction for imaging and analysis of structural defects in the scanning electron microscope
    (London [u.a.] : Institute of Physics, 2020) Trager-Cowan, C.; Alasmari, A.; Avis, W.; Bruckbauer, J.; Edwards, P.R.; Hourahine, B.; Kraeusel, S.; Kusch, G.; Jablon, B.M.; Johnston, R.; Martin, R.W.; Mcdermott, R.; Naresh-Kumar, G.; Nouf-Allehiani, M.; Pascal, E.; Thomson, D.; Vespucci, S.; Mingard, K.; Parbrook, P.J.; Smith, M.D.; Enslin, J.; Mehnke, F.; Kneissl, M.; Kuhn, C.; Wernicke, T.; Knauer, A.; Hagedorn, S.; Walde, S.; Weyers, M.; Coulon, P.-M.; Shields, P.A.; Zhang, Y.; Jiu, L.; Gong, Y.; Smith, R.M.; Wang, T.; Winkelmann, A.
    In this article we describe the scanning electron microscopy (SEM) techniques of electron channelling contrast imaging and electron backscatter diffraction. These techniques provide information on crystal structure, crystal misorientation, grain boundaries, strain and structural defects on length scales from tens of nanometres to tens of micrometres. Here we report on the imaging and analysis of dislocations and sub-grains in nitride semiconductor thin films (GaN and AlN) and tungsten carbide-cobalt (WC-Co) hard metals. Our aim is to illustrate the capability of these techniques for investigating structural defects in the SEM and the benefits of combining these diffraction-based imaging techniques.
  • Item
    High-temperature annealing of AlN films grown on 4H-SiC
    (New York, NY : American Inst. of Physics, 2020) Brunner, F.; Cancellara, L.; Hagedorn, S.; Albrecht, M.; Weyers, M.
    The effect of high-temperature annealing (HTA) at 1700 °C on AlN films grown on 4H-SiC substrates by metalorganic vapor phase epitaxy has been studied. It is shown that the structural quality of the AlN layers improves significantly after HTA similar to what has been demonstrated for AlN grown on sapphire. Dislocation densities reduce by one order of magnitude resulting in 8 × 108 cm-2 for a-type and 1 × 108 cm-2 for c-type dislocations. The high-temperature treatment removes pits from the surface by dissolving nanotubes and dislocations in the material. XRD measurements prove that the residual strain in AlN/4H-SiC is further relaxed after annealing. AlN films grown at higher temperature resulting in a lower as-grown defect density show only a marginal reduction in dislocation density after annealing. Secondary ion mass spectrometry investigation of impurity concentrations reveals an increase of Si after HTA probably due to in-diffusion from the SiC substrate. However, C concentration reduces considerably with HTA that points to an efficient carbon removal process (i.e., CO formation). © 2020 Author(s).
  • Item
    Cathodoluminescence and TEM investigations of structural and optical properties of AlGaN on epitaxial laterally overgrown AlN/sapphire templates
    (Milton Park : Taylor & Francis, 2013) Zeimer, U.; Mogilatenko, A.; Kueller, V.; Knauer, A.; Weyers, M.
    Surface steps as high as 15 nm on up to 10 μm thick AlN layers grown on patterned AlN/sapphire templates play a major role for the structural and optical properties of AlxGa1−xN layers with x ≥ 0.5 grown subsequently by metalorganic vapour phase epitaxy. The higher the Ga content in these layers is, the stronger is the influence of the surface morphology on their properties. For x = 0.5 not only periodic inhomogeneities in the Al content due to growth of Ga-rich facets are observed by cathodoluminescence, but these facets give rise to additional dislocation formation as discovered by annular dark-field scanning transmission electron microscopy. For AlxGa1−xN layers with x = 0.8 the difference in Al content between facets and surrounding material is much smaller. Therefore, the threading dislocation density (TDD) is only defined by the TDD in the underlying epitaxially laterally overgrown (ELO) AlN layer. This way high quality Al0.8Ga0.2N with a thickness up to 1.5 μm and a TDD ≤ 5x108 cm−2 was obtained.
  • Item
    Origin of a-plane (Al,Ga)N formation on patterned c-plane AIN/sapphire templates
    (Milton Park : Taylor & Francis, 2013) Mogilatenko, A.; Kirmse, H.; Hagedorn, S.; Richter, E.; Zeimer, U.; Weyers, M.; Tränkle, G.
    a-plane (Al,Ga)N layers can be grown on patterned c-plane AlN/sapphire templates with a ridge direction along [1bar 100]Al2O3. Scanning nanobeam diffraction reveals that the formation of a-plane layers can be explained by nucleation of c-plane (Al,Ga)N with [11bar 20](Al,Ga)N
  • Item
    High-power diode lasers with in-situ-structured lateral current blocking for improved threshold, efficiency and brightness
    (Bristol : IoP Publ., 2022) Elattar, M.; Brox, O.; Della Casa, P.; Mogilatenko, A.; Maaßdorf, A.; Martin, D.; Wenzel, H.; Knigge, A.; Weyers, M.; Crump, P.
    We present high-power GaAs-based broad-area diode lasers with a novel variant of the enhanced self-aligned lateral structure ‘eSAS’, having a strongly reduced lasing threshold and improved peak conversion efficiency and beam quality in comparison to their standard gain-guided counterparts. To realize this new variant (eSAS-V2), a two-step epitaxial growth process involving in situ etching is used to integrate current-blocking layers, optimized for tunnel current suppression, within the p-Al0.8GaAs cladding layer of an extreme-triple-asymmetric epitaxial structure with a thin p-side waveguide. The blocking layers are thus in close proximity to the active zone, resulting in strong suppression of current spreading and lateral carrier accumulation. eSAS-V2 devices with 4 mm resonator length and varying stripe widths are characterized and compared to previous eSAS variant (eSAS-V1) as well as gain-guided reference devices, all having the same dimensions and epitaxial structure. Measurement results show that the new eSAS-V2 variant eliminates an estimated 89% of lateral current spreading, resulting in a strong threshold current reduction of 29% at 90 μm stripe width, while slope and series resistance are broadly unchanged. The novel eSAS-V2 devices also maintain high conversion efficiency up to high continuous-wave optical power, with an exemplary 90 μm device having 51.5% at 20 W. Near-field width is significantly narrowed in both eSAS variants, but eSAS-V2 exhibits a wider far-field angle, consistent with the presence of index guiding. Nonetheless, eSAS-V2 achieves higher beam quality and lateral brightness than gain-guided reference devices, but the index guiding in this realization prevents it from surpassing eSAS-V1. Overall, the different performance benefits of the eSAS approach are clearly demonstrated.
  • Item
    Optimization of the Epitaxial Growth of Undoped GaN Waveguides in GaN-Based Laser Diodes Evaluated by Photoluminescence
    (Warrendale, Pa : TMS, 2020) Netzel, C.; Hoffmann, V.; Einfeldt, S.; Weyers, M.
    Non-intentionally doped c-plane GaN layers are generally employed as p-side waveguide layers in violet/blue-emitting laser diodes. The recombination and diffusion of charge carriers in the p-side GaN waveguide influence the injection efficiency of holes into the InGaN quantum wells of these devices. In this study, the non-radiative recombination and the diffusivity in the [000-1] direction for charge carriers in such GaN layers are investigated by the photoluminescence of buried InGaN quantum wells, in addition to the GaN photoluminescence. The vertical charge carrier diffusion length and the diffusion constant in GaN were determined by evaluating the intensity from InGaN quantum wells in different depths below a top GaN layer. Additionally, the intensity from the buried InGaN quantum wells was found to be more sensitive to variations in the non-radiative recombination rate in the GaN layer than the intensity from the GaN itself. The study enables conclusions to be drawn on how the growth of a p-side GaN waveguide layer has to be optimized: (1) The charge carrier diffusivity in the [000-1] direction at device operation temperature is limited by phonon scattering and can be only slightly improved by material quality. (2) The use of TMGa (trimethylgallium) instead of TEGa (triethylgallium) as a precursor for the growth of GaN lowers the background silicon doping level and is advantageous for a large hole diffusion length. (3) Small growth rates below 0.5 μm/h when using TMGa or below 0.12 μm/h when using TEGa enhance non-radiative recombination. (4) A V/III gas ratio of 2200 or more is needed for low non-radiative recombination rates in GaN.
  • Item
    Verbundvorhaben Femto-Diode, Teilvorhaben: Halbleiterkomponenten für kompakte Femtosekunden-Laserstrahlquellen : Projekt-Abschlussbericht ; Projekt FBH 9140, HaFemLas ; Abschlussbericht: 1.10.2004 - 30.09.2007
    (Hannover : Technische Informationsbibliothek (TIB), 2008) Klehr, Andreas; Zorn, Martin; Weyers, M.; Erbert, G.; Fricke, J.; Knauer, A.; Pittroff, W.; Staske, R.; Wenzel, H.; Zeimer, U.
    [no abstract available]
  • Item
    Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscope
    (Bristol : IOP Publ., 2020) Trager-Cowan, C.; Alasmari, A.; Avis, W.; Bruckbauer, J.; Edwards, P.R.; Ferenczi, G.; Hourahine, B.; Kotzai, A.; Kraeusel, S.; Kusch, G.; Martin, R.W.; McDermott, R.; Naresh-Kumar, G.; Nouf-Allehiani, M.; Pascal, E.; Thomson, D.; Vespucci, S.; Smith, M.D.; Parbrook, P.J.; Enslin, J.; Mehnke, F.; Kuhn, C.; Wernicke, T.; Kneissl, M.; Hagedorn, S.; Knauer, A.; Walde, S.; Weyers, M.; Coulon, P.-M.; Shields, P.A.; Bai, J.; Gong, Y.; Jiu, L.; Zhang, Y.; Smith, R.M.; Wang, T.; Winkelmann, A.
    The scanning electron microscopy techniques of electron backscatter diffraction (EBSD), electron channelling contrast imaging (ECCI) and cathodoluminescence (CL) hyperspectral imaging provide complementary information on the structural and luminescence properties of materials rapidly and non-destructively, with a spatial resolution of tens of nanometres. EBSD provides crystal orientation, crystal phase and strain analysis, whilst ECCI is used to determine the planar distribution of extended defects over a large area of a given sample. CL reveals the influence of crystal structure, composition and strain on intrinsic luminescence and/or reveals defect-related luminescence. Dark features are also observed in CL images where carrier recombination at defects is non-radiative. The combination of these techniques is a powerful approach to clarifying the role of crystallography and extended defects on a material's light emission properties. Here we describe the EBSD, ECCI and CL techniques and illustrate their use for investigating the structural and light emitting properties of UV-emitting nitride semiconductor structures. We discuss our investigations of the type, density and distribution of defects in GaN, AlN and AlGaN thin films and also discuss the determination of the polarity of GaN nanowires. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Förderschwerpunkt Laser 2000: Grundlegende Untersuchungen zur hochgenauen, berührungslosen laserinterferometrischen Messung großer Längen im Maschinenbau, Teilvorhaben: Grundlegende Untersuchungen leistungsstarker durchstimmbarer Halbleiterlaserdioden : Schlußbericht
    (Berlin : Ferdinand-Braun-Institut, 2000) Erbert, G.; Brugge, F.; Fechner, I.; Fredrich, D.; Gielow, M.; Hofmann, L.; Klehr, A.; Klein, A.; Krause, A.; Knauer, A.; Olschewsky, R.; Oster, A.; Rechenberg, I.; Ressel, P.; Sebastian, J.; Selent, R.; Smirnitzki, V.; Tessaro, T.; Thiemann, M.; Thies, A.; Vogel, K.; Wenzel, H.; Weyers, M.; Würfel, J.; Wochatz, P.
    [no abstract available]