Search Results

Now showing 1 - 9 of 9
  • Item
    The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2
    (Sapporo : IODP, 2007) Erbacher, Jochen; Mutterlose, JÅ‘rg; Wilmsen, Markus; Wonik, Thomas
    [No abstract available]
  • Item
    Scientific drilling of Lake Chalco, Basin of Mexico (MexiDrill)
    (Sapporo : IODP, 2019) Brown, Erik T.; Caballero, Margarita; Cabral Cano, Enrique; Fawcett, Peter J.; Lozano-García, Socorro; Ortega, Beatriz; Pérez, Liseth; Schwalb, Antje; Smith, Victoria; Steinman, Byron A.; Stockhecke, Mona; Valero-Garcés, Blas; Watt, Sebastian; Wattrus, Nigel J.; Werne, Josef P.; Wonik, Thomas; Myrbo, Amy E.; Noren, Anders J.; O'Grady, Ryan; Schnurrenberger, Douglas
    The primary scientific objective of MexiDrill, the Basin of Mexico Drilling Program, is development of a continuous, high-resolution ∼400 kyr lacustrine record of tropical North American environmental change. The field location, in the densely populated, water-stressed Mexico City region gives this record particular societal relevance. A detailed paleoclimate reconstruction from central Mexico will enhance our understanding of long-term natural climate variability in the North American tropics and its relationship with changes at higher latitudes. The site lies at the northern margin of the Intertropical Convergence Zone (ITCZ), where modern precipitation amounts are influenced by sea surface temperatures in the Pacific and Atlantic basins. During the Last Glacial Maximum (LGM), more winter precipitation at the site is hypothesized to have been a consequence of a southward displacement of the mid-latitude westerlies. It thus represents a key spatial node for understanding large-scale hydrological variability of tropical and subtropical North America and is at an altitude (2240 m a.s.l.), typical of much of western North America. In addition, its sediments contain a rich record of pre-Holocene volcanic history; knowledge of the magnitude and frequency relationships of the area's explosive volcanic eruptions will improve capacity for risk assessment of future activity. Explosive eruption deposits will also be used to provide the backbone of a robust chronology necessary for full exploitation of the paleoclimate record. Here we report initial results from, and outreach activities of, the 2016 coring campaign.
  • Item
    An astronomical age-depth model and reconstruction of moisture availability in the sediments of Lake Chalco, central Mexico, using borehole logging data
    (Oxford [u.a.] : Elsevier, 2022) Sardar Abadi, Mehrdad; Zeeden, Christian; Ulfers, Arne; Wonik, Thomas
    Understanding the moisture history of low latitudes from the most recent glacial period of the latest Pleistocene to post-glacial warmth in continental tropical regions is hampered by the lack of continuous time series. We conducted downhole spectral gamma (γ) ray and magnetic susceptibility logs over 300 m of lacustrine deposits of Lake Chalco (Mexico City) to reconstruct an age-depth model using an astronomical and correlative approach, and to reconstruct long-term moisture availability. Our results suggest that the Lake Chalco sediments contain several rhythmic alternations with a quasi-cyclic pattern comparable to the Pleistocene benthic stack. This allows us to calculate a time span of about 500,000 years for this sediment deposition. We developed proxies for moisture, detrital input, and salinity, all based on the physical properties of γ-ray spectroscopy and magnetic susceptibility. Our results indicate that Lake Chalco formed during Marine Isotope Stage 13 (MIS13) and the lake level gradually increased over time until the interglacial MIS9. Moisture content is generally higher during interglacials than during glacials. However, two periods, namely MIS6 and MIS4, have higher moisture contents. We developed a model by comparing the obtained moisture proxy with climatic drivers, to understand how different climate systems drove effective moisture availability in the Chalco sub-basin over the past 500,000 years. Carbon dioxide, eccentricity, and precession are all key drivers of the moisture content of Lake Chalco over the past 500,000 years.
  • Item
    Drilling into an active mofette: pilot-hole study of the impact of CO2-rich mantle-derived fluids on the geo–bio interaction in the western Eger Rift (Czech Republic)
    (Sapporo : IODP, 2017) Bussert, Robert; Kämpf, Horst; Flechsig, Christina; Hesse, Katja; Nickschick, Tobias; Liu, Qi; Umlauft, Josefine; Vylita, Tomáš; Wagner, Dirk; Wonik, Thomas; Flores, Hortencia Estrella; Alawi, Mashal
    Microbial life in the continental "deep biosphere" is closely linked to geodynamic processes, yet this interaction is poorly studied. The Cheb Basin in the western Eger Rift (Czech Republic) is an ideal place for such a study because it displays almost permanent seismic activity along active faults with earthquake swarms up to ML 4.5 and intense degassing of mantle-derived CO2 in conduits that show up at the surface in form of mofettes. We hypothesize that microbial life is significantly accelerated in active fault zones and in CO2 conduits, due to increased fluid and substrate flow. To test this hypothesis, pilot hole HJB-1 was drilled in spring 2016 at the major mofette of the Hartoušov mofette field, after extensive pre-drill surveys to optimize the well location. After drilling through a thin caprock-like structure at 78.5 m, a CO2 blowout occurred indicating a CO2 reservoir in the underlying sandy clay. A pumping test revealed the presence of mineral water dominated by Na+, Ca2+, HCO3−, SO42− (Na-Ca-HCO3-SO4 type) having a temperature of 18.6 °C and a conductivity of 6760 µS cm−1. The high content of sulfate (1470 mg L−1) is typical of Carlsbad Spa mineral waters. The hole penetrated about 90 m of Cenozoic sediments and reached a final depth of 108.50 m in Palaeozoic schists. Core recovery was about 85 %. The cored sediments are mudstones with minor carbonates, sandstones and lignite coals that were deposited in a lacustrine environment. Deformation structures and alteration features are abundant in the core. Ongoing studies will show if they result from the flow of CO2-rich fluids or not.
  • Item
    The Towuti Drilling Project: paleoenvironments, biological evolution, andgeomicrobiology of a tropical Pacific lake
    (Sapporo : IODP, 2016) Russell, James M.; Bijaksana, Satria; Vogel, Hendrik; Melles, Martin; Kallmeyer, Jens; Ariztegui, Daniel; Crowe, Sean; Fajar, Silvia; Hafidz, Abdul; Haffner, Doug; Hasberg, Ascelina; Ivory, Sarah; Kelly, Christopher; King, John; Kirana, Kartika; Morlock, Marina; Noren, Anders; O'Grady, Ryan; Ordonez, Luis; Stevenson, Janelle; von Rintelen, Thomas; Vuillemin, Aurele; Watkinson, Ian; Wattrus, Nigel; Wicaksono, Satrio; Wonik, Thomas; Bauer, Kohen; Deino, Alan; Friese, André; Henny, Cynthia; Marwoto, Ristiyanti; Ngkoimani, La Ode; Nomosatryo, Sulung; Safiuddin, La Ode; Simister, Rachel; Tamuntuan, Gerald
    The Towuti Drilling Project (TDP) is an international research program, whose goal is to understand long-term environmental and climatic change in the tropical western Pacific, the impacts of geological and environmental changes on the biological evolution of aquatic taxa, and the geomicrobiology and biogeochemistry of metal-rich, ultramafic-hosted lake sediments through the scientific drilling of Lake Towuti, southern Sulawesi, Indonesia. Lake Towuti is a large tectonic lake at the downstream end of the Malili lake system, a chain of five highly biodiverse lakes that are among the oldest lakes in Southeast Asia. In 2015 we carried out a scientific drilling program on Lake Towuti using the International Continental Scientific Drilling Program (ICDP) Deep Lakes Drilling System (DLDS). We recovered a total of  ∼ 1018 m of core from 11 drilling sites with water depths ranging from 156 to 200 m. Recovery averaged 91.7 %, and the maximum drilling depth was 175 m below the lake floor, penetrating the entire sedimentary infill of the basin. Initial data from core and borehole logging indicate that these cores record the evolution of a highly dynamic tectonic and limnological system, with clear indications of orbital-scale climate variability during the mid- to late Pleistocene.
  • Item
    The geodynamic and limnological evolution of Balkan Lake Ohrid, possibly the oldest extant lake in Europe
    (Oxford : Wiley-Blackwell, 2022) Wagner, Bernd; Tauber, Paul; Francke, Alexander; Leicher, Niklas; Binnie, Steven A.; Cvetkoska, Aleksandra; Jovanovska, Elena; Just, Janna; Lacey, Jack H.; Levkov, Zlatko; Lindhorst, Katja; Kouli, Katerina; Krastel, Sebastian; Panagiotopoulos, Konstantinos; Ulfers, Arne; Zaova, Dušica; Donders, Timme H.; Grazhdani, Andon; Koutsodendris, Andreas; Leng, Melanie J.; Sadori, Laura; Scheinert, Mirko; Vogel, Hendrik; Wonik, Thomas; Zanchetta, Giovanni; Wilke, Thomas
    Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584-m-long DEEP sediment succession and a comparison to a 197-m-long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26Al/10Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a−1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe’s presumed oldest extant freshwater lake.
  • Item
    Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present
    (Katlenburg-Lindau : European Geosciences Union, 2016) Francke, Alexander; Wagner, Bernd; Just, Janna; Leicher, Niklas; Gromig, Raphael; Baumgarten, Henrike; Vogel, Hendrik; Lacey, Jack H.; Sadori, Laura; Wonik, Thomas; Leng, Melanie J.; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio
    Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8. © Author(s) 2016.
  • Item
    The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project
    (Katlenburg-Lindau : European Geosciences Union, 2017) Wagner, Bernd; Wilke, Thomas; Francke, Alexander; Albrecht, Christian; Baumgarten, Henrike; Bertini, Adele; Combourieu-Nebout, Nathalie; Cvetkoska, Aleksandra; D'Addabbo, Michele; Donders, Timme H.; Föller, Kirstin; Giaccio, Biagio; Grazhdani, Andon; Hauffe, Torsten; Holtvoeth, Jens; Joannin, Sebastien; Jovanovska, Elena; Just, Janna; Kouli, Katerina; Koutsodendris, Andreas; Krastel, Sebastian; Lacey, Jack H.; Leicher, Niklas; Leng, Melanie J.; Levkov, Zlatko; Lindhorst, Katja; Masi, Alessia; Mercuri, Anna M.; Nomade, Sebastien; Nowaczyk, Norbert; Panagiotopoulos, Konstantinos; Peyron, Odile; Reed, Jane M.; Regattieri, Eleonora; Sadori, Laura; Sagnotti, Leonardo; Stelbrink, Björn; Sulpizio, Roberto; Tofilovska, Slavica; Torri, Paola; Vogel, Hendrik; Wagner, Thomas; Wagner-Cremer, Friederike; Wolff, George A.; Wonik, Thomas; Zanchetta, Giovanni; Zhang, Xiaosen S.
    This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates long-term variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard-Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role. © Author(s) 2017.