Search Results

Now showing 1 - 2 of 2
  • Item
    Deformation characteristics of solid-state benzene as a step towards understanding planetary geology
    ([London] : Nature Publishing Group UK, 2022) Zhang, Wenxin; Zhang, Xuan; Edwards, Bryce W.; Zhong, Lei; Gao, Huajian; Malaska, Michael J.; Hodyss, Robert; Greer, Julia R.
    Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn’s largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan’s dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 μm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.
  • Item
    A bioinspired snap-through metastructure for manipulating micro-objects
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2022) Zhang, Xuan; Wang, Yue; Tian, Zhihao; Samri, Manar; Moh, Karsten; McMeeking, Robert M.; Hensel, René; Arzt, Eduard
    Micro-objects stick tenaciously to each other—a well-known show-stopper in microtechnology and in handling micro-objects. Inspired by the trigger plant, we explore a mechanical metastructure for overcoming adhesion involving a snap-action mechanism. We analyze the nonlinear mechanical response of curved beam architectures clamped by a tunable spring, incorporating mono- and bistable states. As a result, reversible miniaturized snap-through devices are successfully realized by micron-scale direct printing, and successful pick-and-place handling of a micro-object is demonstrated. The technique is applicable to universal scenarios, including dry and wet environment, or smooth and rough counter surfaces. With an unprecedented switching ratio (between high and low adhesion) exceeding 104, this concept proposes an efficient paradigm for handling and placing superlight objects.