Search Results

Now showing 1 - 4 of 4
  • Item
    Modeling of Individual Fruit-Bearing Capacity of Trees Is Aimed at Optimizing Fruit Quality of Malus x domestica Borkh. 'Gala'
    (Lausanne : Frontiers Media, 2021) Penzel, Martin; Herppich, Werner B.; Weltzien, Cornelia; Tsoulias, Nikos; Zude-Sasse, Manuela
    The capacity of apple trees to produce fruit of a desired diameter, i.e., fruit-bearing capacity (FBC), was investigated by considering the inter-tree variability of leaf area (LA). The LA of 996 trees in a commercial apple orchard was measured by using a terrestrial two-dimensional (2D) light detection and ranging (LiDAR) laser scanner for two consecutive years. The FBC of the trees was simulated in a carbon balance model by utilizing the LiDAR-scanned total LA of the trees, seasonal records of fruit and leaf gas exchanges, fruit growth rates, and weather data. The FBC was compared to the actual fruit size measured in a sorting line on each individual tree. The variance of FBC was similar in both years, whereas each individual tree showed different FBC in both seasons as indicated in the spatially resolved data of FBC. Considering a target mean fruit diameter of 65 mm, FBC ranged from 84 to 168 fruit per tree in 2018 and from 55 to 179 fruit per tree in 2019 depending on the total LA of the trees. The simulated FBC to produce the mean harvest fruit diameter of 65 mm and the actual number of the harvested fruit >65 mm per tree were in good agreement. Fruit quality, indicated by fruit's size and soluble solids content (SSC), showed enhanced percentages of the desired fruit quality according to the seasonally total absorbed photosynthetic energy (TAPE) of the tree per fruit. To achieve a target fruit diameter and reduce the variance in SSC at harvest, the FBC should be considered in crop load management practices. However, achieving this purpose requires annual spatial monitoring of the individual FBC of trees.
  • Item
    Respiratory patterns of European pear (Pyrus communis L. ‘Conference’) throughout pre- and post-harvest fruit development
    (London [u.a.] : Elsevier, 2019) Brandes, Nicole; Zude-Sasse, Manuela
    Information on the developmental stage of pear pre-harvest and in shelf-life is crucial to determine the optimum timing of harvest, post-harvest treatment, and time of consumption ensuring high eating quality. In the present study, CO2 emission and fruit quality of European pear (Pyrus communis L.) ‘Conference’ were analysed pre- and post-harvest with emphasis on shelf life for three years. Additionally, cytochrome and cyanide-resistant O2 consumption were analysed in the last year of experiments. The respiration rate of pear showed typical climacteric rise of CO2 emission in two years only, despite daily measurements. However, in each year the fruit quality in shelf life was closely linked to harvest date suggesting climacteric fruit response. Thus, the developmental stage of ‘Conference’ pear should be analysed by additional methods. Particularly, the cytochrome and cyanide-resistant O2 consumption showed an encouraging potential to obtain data on characteristic respiratory patterns. © 2019
  • Item
    Validation study for measuring absorption and reduced scattering coefficients by means of laser-induced backscattering imaging
    (Amsterdam [u.a.] : Elsevier Science, 2019) Zude-Sasse, Manuela; Hashim, Norhashila; Hass, Roland; Polley, Nabarun; Regen, Christian
    Decoupling of optical properties appears challenging, but vital to get better insight of the relationship between light and fruit attributes. In this study, nine solid phantoms capturing the ranges of absorption (μa) and reduced scattering (μs’) coefficients in fruit were analysed non-destructively using laser-induced backscattering imaging (LLBI) at 1060 nm. Data analysis of LLBI was carried out on the diffuse reflectance, attenuation profile obtained by means of Farrell's diffusion theory either calculating μa [cm−1] and μs’ [cm−1] in one fitting step or fitting only one optical variable and providing the other one from a destructive analysis. The nondestructive approach was approved when calculating one unknown coefficient non-destructively, while no ability of the method was found to analysis both, μa and μs’, non-destructively. Setting μs’ according to destructive photon density wave (PDW) spectroscopy and fitting μa resulted in root mean square error (rmse) of 18.7% in comparison to fitting μs’ resulting in rmse of 2.6%, pointing to decreased measuring uncertainty, when the highly variable μa was known. The approach was tested on European pear, utilizing destructive PDW spectroscopy for setting one variable, while LLBI was applied for calculating the remaining coefficient. Results indicated that the optical properties of pear obtained from PDW spectroscopy as well as LLBI changed concurrently in correspondence to water content mainly. A destructive batch-wise analysis of μs’ and online analysis of μa may be considered in future developments for improved fruit sorting results, when considering fruit with high variability of μs’. © 2019 The Authors
  • Item
    Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use
    (Amsterdam [u.a.] : Elsevier Science, 2020) Walsh, Kerry B.; Blasco, José; Zude-Sasse, Manuela; Sun, Xudong
    The application of visible (Vis; 400–750 nm) and near infrared red (NIR; 750–2500 nm) region spectroscopy to assess fruit and vegetables is reviewed in context of ‘point’ spectroscopy, as opposed to multi- or hyperspectral imaging. Vis spectroscopy targets colour assessment and pigment analysis, while NIR spectroscopy has been applied to assessment of macro constituents (principally water) in fresh produce in commercial practice, and a wide range of attributes in the scientific literature. This review focusses to key issues relevant to the widespread implementation of Vis-NIR technology in the fruit sector. A background to the concepts and technology involved in the use of Vis-NIR spectroscopy is provided and instrumentation for in-field and in-line applications, which has been available for two and three decades, respectively, is described. A review of scientific effort is made for the period 2015 - February 2020, in terms of the application areas, instrumentation, chemometric methods and validation procedures, and this work is critiqued through comparison to techniques in commercial use, with focus to wavelength region, optical geometry, experimental design, and validation procedures. Recommendations for future research activity in this area are made, e.g., application development with consideration of the distribution of the attribute of interest in the product and the matching of optically sampled and reference method sampled volume; instrumentation comparisons with consideration of repeatability, optimum optical geometry and wavelength range). Recommendations are also made for reporting requirements, viz. description of the application, the reference method, the composition of calibration and test populations, chemometric reporting and benchmarking to a known instrument/method, with the aim of maximising useful conclusions from the extensive work being done around the world.