Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Magnon spectrum of the helimagnetic insulator Cu2OSeO3

2016, Portnichenko, P.Y., Romhányi, J., Onykiienko, Y.A., Henschel, A., Schmidt, M., Cameron, A.S., Surmach, M.A., Lim, J.A., Park, J.T., Schneidewind, A., Abernathy, D.L., Rosner, H., van den Brink, Jeroen, Inosov, D.S.

Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.

Loading...
Thumbnail Image
Item

Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3

2016, Nishimoto, Satoshi, Katukuri, Vamshi M., Yushankhai, Viktor, Stoll, Hermann, Rößler, Ulrich K., Hozoi, Liviu, Rousochatzakis, Ioannis, van den Brink, Jeroen

Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4+ in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir–Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram.