Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Theoretical approach to resonant inelastic X-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

2016, Marra, Pasquale, van den Brink, Jeroen, Sykora, Steffen

We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing.

Loading...
Thumbnail Image
Item

Coupled multiple-mode theory for s± pairing mechanism in iron based superconductors

2016, Kiselev, M.N., Efremov, D.V., Drechsler, S.L., van den Brink, Jeroen, Kikoin, K.

We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg-Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other.

Loading...
Thumbnail Image
Item

Unconventional superconductivity and interaction induced Fermi surface reconstruction in the two-dimensional Edwards model

2016, Cho, Dai-Ning, van den Brink, Jeroen, Fehske, Holger, Becker, Klaus W., Sykora, Steffen

We study the competition between unconventional superconducting pairing and charge density wave (CDW) formation for the two-dimensional Edwards Hamiltonian at half filling, a very general two-dimensional transport model in which fermionic charge carriers couple to a correlated background medium. Using the projective renormalization method we find that a strong renormalization of the original fermionic band causes a new hole-like Fermi surface to emerge near the center of the Brillouin zone, before it eventually gives rise to the formation of a charge density wave. On the new, disconnected parts of the Fermi surface superconductivity is induced with a sign-changing order parameter. We discuss these findings in the light of recent experiments on iron-based oxypnictide superconductors.