Search Results

Now showing 1 - 10 of 116
Loading...
Thumbnail Image
Item

Regional Saharan dust modelling during the SAMUM 2006 campaign

2017, Heinold, Bernd, Tegen, Ina, Esselborn, Michael, Kandler, Konrad, Knippertz, Peter, Müller, Detlef, Schladitz, Alexander, Tesche, Matthias, Weinzierl, Bernadett, Ansmann, Albert, Althausen, Dietrich, Laurent, Benoit, Massling, Andreas, Müller, Thomas, Petzold, Andreas, Schepanski, Kerstin, Wiedensohler, Alfred

The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.

Loading...
Thumbnail Image
Item

Regional modelling of Saharan dust and biomass-burning smoke, Part 2: Direct radiative forcing and atmospheric dynamic response

2017, Heinold, Bernd, Tegen, Ina, Bauer, Stefan, Wendisch, Manfred

The direct radiative forcing and dynamic atmospheric response due to Saharan dust and biomass-burning aerosol particles are presented for a case study during the SAMUM-2 field campaign in January and February 2008. The regional model system COSMO-MUSCAT is used. It allows online interaction of the computed dust and smoke load with the solar and terrestrial radiation and with the model dynamics. Model results of upward solar irradiances are evaluated against airborne radiation measurements in the Cape Verde region. The comparison shows a good agreement for the case of dust and smoke mixture. Dust and smoke particles influence the atmospheric dynamics by changing the radiative heating rates. The related pressure perturbations modify local and synoptic scale air-flow patterns. In the radiative feedback simulations, the Hadley circulation is enhanced and convergence zones occur along the Guinea coast. Thus, the smoke particles spread more than 5◦ further north and the equatorward transport is reduced. Within the convergence zones, Saharan dust and biomass-burning material are more effectively advected towards the Cape Verdes. Given the model uncertainties, the agreement between the modelled and observed aerosol distribution is locally improved when aerosol–radiation interaction is considered.

Loading...
Thumbnail Image
Item

Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications

2017, Wiegner, M., Gasteiger, J., Kandler, K., Weinzierl, B., Rasp, K., Esselborn, M., Freudenthaler, V., Heese, B., Toledano, C., Tesche, M., Althausen, D.

In the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio Sp and linear depolarization ratio δp—are very sensitive to changes of all parameters. The simulated values of the δp are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5μm show a range of possible values between 29 and 50 sr at λ = 532 nm. Larger Sp might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence Sp and δp that could not be measured with the required accuracy.

Loading...
Thumbnail Image
Item

Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds

2011, Ebert, M., Worringen, A., Benker, N., Mertes, S., Weingartner, E., Weinbruch, S.

During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.

Loading...
Thumbnail Image
Item

Occurrence of polar mesosphere summer echoes at very high latitudes

2009, Zecha, M., Röttger, J.

Observations of polar mesosphere summer echoes (PMSE) have been carried out during the summer periodes 1999–2001 and 2003–2004 at the very high latitude of 78° N using the SOUSY Svalbard Radar (53.5 MHz) at Longyearbyen. Although the measurements could not be done continuously in these seasons, PMSE have been detected over more than 6600 h of 9300 h of observation time overall. Using this data base, particular PMSE occurrence characteristics have been determined. PMSE at Svalbard appear from the middle of May to the end of August with an almost permanent total occurrence in June and July. Diurnal variations are observable in the height-depend occurrence rates and in PMSE thickness, they show a maximum around 09:00–10:00 UTC and a minimum around 21:00–22:00 UTC. PMSE occur nearly exclusively between a height of 80 km and 92 km with a maximum near 85 km. However, PMSE appear not simultaneously over the entire height range, the mean vertical PMSE extension is around 4–6 km in June and July. Furthermore, typically PMSE are separated into several layers, and only 30% of all PMSE are single layers. The probability of multiple layers is greater in June and July than at the beginning and the end of the PMSE season and shows a marked 5-day-variation. The same variation is noticeable in the seasonal dependence of the PMSE occurrence and the PMSE thickness. We finally discuss potential geophysical processes to explain our observational results.

Loading...
Thumbnail Image
Item

Spectral aerosol optical depth characterization of desert dust during SAMUM 2006

2017, Toledano, C., Wiegner, M., Garhammer, M., Seefeldner, M., Gasteiger, J., Müller, D., Koepke, P.

The aerosol optical depth (AOD) in the range 340–1550 nm was monitored at Ouarzazate (Morocco) during the Saharan Mineral Dust Experiment (SAMUM) experiment in May–June 2006. Two different sun photometers were used for this purpose. The mean AOD at 500 nm was 0.28, with a maximum of 0.83, and the mean Ångstr¨om exponent (AE) was 0.35. The aerosol content over the site changed alternatively from very low turbidity, associated to Atlantic air masses, to moderate dust load, associated to air masses arriving in the site from Algeria, Tunisia and Libya. The dusty conditions were predominant in the measurement period (78% of data), with AOD (500 nm) above 0.15 and AE below 0.4. The spectral features of the AOD under dusty conditions are discussed. Air mass back trajectory analysis is carried out to investigate the origin and height patterns of the dust loaded air masses. The advection of dust occurred mainly at atmospheric heights below 3000 m, where east flow is the predominant. At the 5000m level, the air masses originate mainly over the Atlantic Ocean. Finally the Optical Properties of Aerosols and Clouds (OPAC) model is used to perform a set of simulations with different aerosol mixtures to illustrate the measured AOD and AE values under varying dust concentrations, and a brief comparison with other measurement sites is presented.

Loading...
Thumbnail Image
Item

Vertical profiling of convective dust plumes in southern Morocco during SAMUM

2017, Ansmann, Albert, Tesche, Matthias, Knippertz, Peter, Bierwirth, Eike, Althausen, Dietrich, Müller, Detlef, Schulz, Oliver

Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9◦N, 6.9◦W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 ms−1.

Loading...
Thumbnail Image
Item

Large mesospheric ice particles at exceptionally high altitudes

2009, Megner, L., Khaplanov, M., Baumgarten, G., Gumbel, J., Stegman, J., Strelnikov, B., Robertson, S.

We here report on the characteristics of exceptionally high Noctilucent clouds (NLC) that were detected with rocket photometers during the ECOMA/MASS campaign at Andøya, Norway 2007. The results from three separate flights are shown and discussed in connection to lidar measurements. Both the lidar measurements and the large difference between various rocket passages through the NLC show that the cloud layer was inhomogeneous on large scales. Two passages showed a particularly high, bright and vertically extended cloud, reaching to approximately 88 km. Long time series of lidar measurements show that NLC this high are very rare, only one NLC measurement out of thousand reaches above 87 km. The NLC is found to consist of three distinct layers. All three were bright enough to allow for particle size retrieval by phase function analysis, even though the lowest layer proved too horizontally inhomogeneous to obtain a trustworthy result. Large particles, corresponding to an effective radius of 50 nm, were observed both in the middle and top of the NLC. The present cloud does not comply with the conventional picture that NLC ice particles nucleate near the temperature minimum and grow to larger sizes as they sediment to lower altitudes. Strong up-welling, likely caused by gravity wave activity, is required to explain its characteristics.

Loading...
Thumbnail Image
Item

In situ aerosol characterization at Cape Verde, Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol

2017, Schladitz, Alexander, Müller, Thomas, Nowak, Andreas, Kandler, Konrad, Lieke, Kirsten, Massling, Andreas, Wiedensohler, Alfred

Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dpve = 26 nm to 10 μm. For hygroscopic particles with dpve < 100 nm, the median hygroscopicity parameter κ is 0.35. From 100 nm < dpve < 350 nm, κ increases to 0.65. For larger particles, κ at dpve = 350 nm was used. For nearly hydrophobic particles, κ is between 0 and 0.1 for dpve < 250 nm and decreases to 0 for dpve > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles.

Loading...
Thumbnail Image
Item

MALTE - Model to predict new aerosol formation in the lower troposphere

2006, Boy, M., Hellmuth, O., Korhonen, H., Nilsson, E.D., ReVelle, D., Turnipseed, A., Arnold, F., Kulmala, M.

The manuscript presents a detailed description of the meteorological and chemical code of Malte – a model to predict new aerosol formation in the lower troposphere. The aerosol dynamics are achieved by the new developed UHMA (University of Helsinki Multicomponent Aerosol Model) code with kinetic limited nucleation as responsible mechanism to form new clusters. First results indicate that the model is able to predict the on- and offset of new particle formation as well as the total aerosol number concentrations that were in good agreement with the observations. Further, comparison of predicted and measured H2SO4 concentrations showed a satisfactory agreement. The simulation results indicated that at a certain transitional particle diameter (2–7 nm), organic molecules can begin to contribute significantly to the growth rate compared to sulphuric acid. At even larger particle sizes, organic molecules can dominate the growth rate on days with significant monoterpene concentrations. The intraday vertical evolution of newly formed clusters and particles in two different size ranges resulted in two maxima at the ground. These particles grow around noon to the detectable size range and agree well with measured vertical profiles.