Search Results

Now showing 1 - 7 of 7
  • Item
    Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor
    (Frankfurt am Main : Beilstein-Institut, 2014) Pohl, Anna; Weiss, Ingrid M.
    A microfluidic biosensor with surface acoustic wave technology was used in this study to monitor the interaction of calcium carbonate with standard carboxylate self-assembled monolayer sensor chips. Different fluids, with and without biomolecular components, were investigated. The pH-dependent surface interactions of two bio-inspired cationic peptides, AS8 and ES9, which are similar to an extracellular domain of the chitin synthase involved in mollusc shell formation, were also investigated in a biological buffer system. A range of experimental conditions are described that are suitable to study non-covalent molecular interactions in the presence of ionic substances, such as, mineral precursors below the solubility equilibrium. The peptide ES9, equal to the mollusc chitin synthase epitope, is less sensitive to changes in pH than its counterpart AS8 with a penta-lysine core, which lacks the flanking acidic residues. This study demonstrates the extraordinary potential of microfluidic surface acoustic wave biosensors to significantly expand our experimental capabilities for studying the principles underlying biomineralization in vitro.
  • Item
    Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001)
    (Frankfurt am Main : Beilstein-Institut, 2012) Held, Christian; Seyller, Thomas; Bennewitz, Roland
    Noncontact atomic force microscopy provides access to several complementary signals, such as topography, damping, and contact potential. The traditional presentation of such data sets in adjacent figures or in colour-coded pseudo-three-dimensional plots gives only a qualitative impression. We introduce two-dimensional histograms for the representation of multichannel NC-AFM data sets in a quantitative fashion. Presentation and analysis are exemplified for topography and contact-potential data for graphene grown epitaxially on 6H-SiC(0001), as recorded by Kelvin probe force microscopy in ultrahigh vacuum. Sample preparations by thermal decomposition in ultrahigh vacuum and in an argon atmosphere are compared and the respective growth mechanisms discussed.
  • Item
    Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy
    (Frankfurt am Main : Beilstein-Institut, 2017) Tavernaro, Isabella; Cavelius, Christian; Peuschel, Henrike; Kraegeloh, Annette
    In recent years, fluorescent nanomaterials have gained high relevance in biological applications as probes for various fluorescencebased spectroscopy and imaging techniques. Among these materials, dye-doped silica nanoparticles have demonstrated a high potential to overcome the limitations presented by conventional organic dyes such as high photobleaching, low stability and limited fluorescence intensity. In the present work we describe an effective approach for the preparation of fluorescent silica nanoparticles in the size range between 15 and 80 nm based on L-arginine-controlled hydrolysis of tetraethoxysilane in a biphasic cyclohexane–water system. Commercially available far-red fluorescent dyes (Atto647N, Abberior STAR 635, Dy-647, Dy-648 and Dy-649) were embedded covalently into the particle matrix, which was achieved by aminosilane coupling. The physical particle attributes (particle size, dispersion, degree of agglomeration and stability) and the fluorescence properties of the obtained particles were compared to particles from commonly known synthesis methods. As a result, the spectroscopic characteristics of the presented monodisperse dye-doped silica nanoparticles were similar to those of the free uncoupled dyes, but indicate a much higher photostability and brightness. As revealed by dynamic light scattering and ζ-potential measurements, all particle suspensions were stable in water and cell culture medium. In addition, uptake studies on A549 cells were performed, using confocal and stimulated emission depletion (STED) microscopy. Our approach allows for a step-by-step formation of dye-doped silica nanoparticles in the form of dye-incorporated spheres, which can be used as versatile fluorescent probes in confocal and STED imaging.
  • Item
    Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation
    (Frankfurt am Main : Beilstein-Institut, 2015) Caron, Arnaud; Bennewitz, Roland
    We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.
  • Item
    Interactions between shape-persistent macromolecules as probed by AFM
    (Frankfurt am Main : Beilstein-Institut, 2017) Blas, Johannes; Brunke, Jessica; Emmerich, Franziska; Cédric, Przybylski; Garamus, Vasil M.; Feoktystov, Artem; Bennewitz, Roland; Wenz, Gerhard; Albrecht, Marcel
    Water-soluble shape-persistent cyclodextrin (CD) polymers with amino-functionalized end groups were prepared starting from diacetylene-modified cyclodextrin monomers by a combined Glaser coupling/click chemistry approach. Structural perfection of the neutral CD polymers and inclusion complex formation with ditopic and monotopic guest molecules were proven by MALDI–TOF and UV–vis measurements. Small-angle neutron and X-ray (SANS/SAXS) scattering experiments confirm the stiffness of the polymer chains with an apparent contour length of about 130 Å. Surface modification of planar silicon wafers as well as AFM tips was realized by covalent bound formation between the terminal amino groups of the CD polymer and a reactive isothiocyanate–silane monolayer. Atomic force measurements of CD polymer decorated surfaces show enhanced supramolecular interaction energies which can be attributed to multiple inclusion complexes based on the rigidity of the polymer backbone and the regular configuration of the CD moieties. Depending on the geometrical configuration of attachment anisotropic adhesion characteristics of the polymer system can be distinguished between a peeling and a shearing mechanism.
  • Item
    Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages
    (Frankfurt am Main : Beilstein-Institut, 2017) Vanhecke, Dimitri; Kuhn, Dagmar A.; de Aberasturi, Dorleta Jimenez; Balog, Sandor; Milosevic, Ana; Urban, Dominic; Peckys, Diana; de Jonge, Niels; Parak, Wolfgang J.; Petri-Fink, Alke; Rothen-Rutishauser, Barbara
    Little is known about the simultaneous uptake of different engineered nanoparticle types, as it can be expected in our daily life. In order to test such co-exposure effects, murine macrophages (J774A.1 cell line) were incubated with gold (AuNPs) and iron oxide nanoparticles (FeOxNPs) either alone or combined. Environmental scanning electron microscopy revealed that single NPs of both types bound within minutes on the cell surface but with a distinctive difference between FeOxNPs and AuNPs. Uptake analysis studies based on laser scanning microscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry revealed intracellular appearance of both NP types in all exposure scenarios and a time-dependent increase. This increase was higher for both AuNPs and FeOxNPs during co-exposure. Cells treated with endocytotic inhibitors recovered after co-exposure, which additionally hinted that two uptake mechanisms are involved. Cross-talk between uptake pathways is relevant for toxicological studies: Co-exposure acts as an uptake accelerant. If the goal is to maximize the cellular uptake, e.g., for the delivery of pharmaceutical agents, this can be beneficial. However, co-exposure should also be taken into account in the case of risk assessment of occupational settings. The demonstration of co-exposure-invoked pathway interactions reveals that synergetic nanoparticle effects, either positive or negative, must be considered for nanotechnology and nanomedicine in particular to develop to its full potential.
  • Item
    Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system
    (Frankfurt am Main : Beilstein-Institut, 2018) Petzhold, Chritinane; Koch, Marcus; Bennewitz, Roland
    Friction force microscopy was performed with oxidized or gold-coated silicon tips sliding on Au(111) or oxidized Si(100) surfaces in ultrahigh vacuum. We measured very low friction forces compared to adhesion forces and found a modulation of lateral forces reflecting the atomic structure of the surfaces. Holding the force-microscopy tip stationary for some time did not lead to an increase in static friction, i.e., no contact ageing was observed for these pairs of tip and surface. Passivating layers from tip or surface were removed in order to allow for contact ageing through the development of chemical bonds in the static contact. After removal of the passivating layers, tribochemical reactions resulted in strong friction forces and tip wear. Friction, wear, and the re-passivation by oxides are discussed based on results for the temporal development of friction forces, on images of the scanned area after friction force microscopy experiments, and on electron microscopy of the tips.