Search Results

Now showing 1 - 10 of 33
Loading...
Thumbnail Image
Item

Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp

2014, Wählisch, Felix C., Peter, Nicolas J., Torrents Abad, Oscar, Oliveira, Mariana V.G., Schneider, Andreas S., Schmahl, Wolfgang, Griesshaber, Erika, Bennewitz, Roland

We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell.

Loading...
Thumbnail Image
Item

A conceptual framework for analysing and measuring land-use intensity

2013, Erb, Karl-Heinz, Haberl, Helmut, Jepsen, Martin Rudbeck, Kuemmerle, Tobias, Lindner, Marcus, Müller, Daniel, Verburg, Peter H., Reenberg, Anette

Large knowledge gaps currently exist that limit our ability to understand and characterise dynamics and patterns of land-use intensity: in particular, a comprehensive conceptual framework and a system of measurement are lacking. This situation hampers the development of a sound understanding of the mechanisms, determinants, and constraints underlying changes in land-use intensity. On the basis of a review of approaches for studying land-use intensity, we propose a conceptual framework to quantify and analyse land-use intensity. This framework integrates three dimensions: (a) input intensity, (b) output intensity, and (c) the associated system-level impacts of land- based production (e.g. changes in carbon storage or biodiversity). The systematic development of indicators across these dimensions would provide opportunities for the systematic analyses of the trade-offs, synergies and opportunity costs of land-use intensification strategies.

Loading...
Thumbnail Image
Item

Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling

2013, Niewiadomski, Pawel, Kong, Jennifer H., Ahrends, Robert, Ma, Yan, Humke, Eric W., Khan, Sohini, Teruel, Mary N., Novitch, Bennett G., Rohatgi, Rajat

Gli proteins are transcriptional effectors of the Hedgehog (Hh) pathway in both normal development and cancer. We describe a program of multisite phosphorylation that regulates the conversion of Gli proteins into transcriptional activators. In the absence of Hh ligands, Gli activity is restrained by the direct phosphorylation of six conserved serine residues by protein kinase A (PKA), a master negative regulator of the Hh pathway. Activation of signaling leads to a global remodeling of the Gli phosphorylation landscape: the PKA target sites become dephosphorylated, while a second cluster of sites undergoes phosphorylation. The pattern of Gli phosphorylation can regulate Gli transcriptional activity in a graded fashion, suggesting a phosphorylation-based mechanism for how a gradient of Hh signaling in a morphogenetic field can be converted into a gradient of transcriptional activity.

Loading...
Thumbnail Image
Item

Awassi sheep keeping in the Arabic steppe in relation to nitrous oxide emission from soil

2013, Hijazi, Omar, Berg, Werner, Moussa, Samouil, Ammon, Christian, von Bobrutzki, Kristina, Brunsch, Reiner

Sheep husbandry is the main source of income for farmers in arid zones. Increasing sheep production on steppes may increase the greenhouse gas production. The objective of this study was to investigate the nitrous oxide (N2O) emissions from the steppes for Awassi sheep keeping and feed cropping in arid zones such as Syria. The methodology developed by the Intergovernmental Panel on Climate Change (IPCC) was used to estimate N2O emissions. A survey was conducted on 64 farms in Syria to gather data for analysis. Precipitation and crop yield data from 2001 to 2009 were also used for calculation and modelling. Sheep-keeping systems, precipitation, year and the region have significant effects on N2O emissions (p<0.05). Emissions of N2O from lands with extensive, semi-intensive and intensive systems were 0.30 ± 0.093, 0.598± 0.113 and 2.243± 0.187 kg sheep1year1, respectively. Crop production was higher in regions with high precipitation levels, which helped to reduce N2O emissions. Using more residuals of wheat, cotton and soya as feed for sheep in the keeping systems evaluated may decrease the overuse of steppe regions and N2O emissions. Nitrous oxide emissions of N2O from sheep-keeping areas can be reduced by changing sheep-keeping systems and increasing the crop production in arid zones through artificial irrigation.

Loading...
Thumbnail Image
Item

Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage

2014, Reza, M. Toufiq, Becker, Wolfgang, Sachsenheimer, Kerstin, Mumme, Jan

Near-infrared (NIR) spectroscopy was evaluated as a rapid method of predicting fiber components (hemicellulose, cellulose, lignin, and ash) and selective compounds of hydrochar and corresponding process liquor produced by hydrothermal carbonization (HTC) of maize silage. Several HTC reaction times and temperatures were applied and NIR spectra of both HTC solids and liquids were obtained and correlated with concentration determined from van-Soest fiber analysis, IC, and UHPLC. Partial least-squares regression was applied to calculate models for the prediction of selective substances. The model developed with the spectra had the best performance in 3–7 factors with a correlation coefficient, which varied between 0.9275–0.9880 and 0.9364–0.9957 for compounds in solid and liquid, respectively. Calculated root mean square errors of prediction (RMSEP) were 0.42–5.06 mg/kg. The preliminary results indicate that NIR, a widely applied technique, might be applied to determine chemical compounds in HTC solid and liquid.

Loading...
Thumbnail Image
Item

Enzyme-based lignocellulose hydrolyzation – Brief data survey for cellulase performance characterization on behalf of the Sauter mean diameter of raw material particles

2015, Glaser, Robert

The data presented here supports the informational background of enzyme-based lignocellulose hydrolyzation, cellulase characterization, and sugar yield prediction for the work “Enzyme-based lignocellulose hydrolyzation – Sauter mean diameter of raw materials as a basis for cellulase performance characterization and yield prediction” by Glaser [1]. Glucose yields from the enzymatic hydrolysis of the raw materials were shown as a function of cellulase enzyme loading as well as of particle size with different solid loading. The data for the proposed methods of the determination of enzyme activity in inhomogeneous samples of lignocellulosic raw materials are presented. The data of the empirical model that was developed for the prediction of hydrolysis yields for different enzyme concentrations, substrate specific particle size, and solid loadings, are given. Data are also given in relation of terms of scale-up opportunities.

Loading...
Thumbnail Image
Item

Structural evolution and strain induced mixing in Cu-Co composites studied by transmission electron microscopy and atom probe tomography

2015, Bachmaier, Andrea, Aboulfadl, H., Pfaff, Marina, Mücklich, Frank, Motz, Christian

A Cu–Co composite material is chosen as a model system to study structural evolution and phase formations during severe plastic deformation. The evolving microstructures as a function of the applied strain were characterized at the micro-, nano-, and atomic scale-levels by combining scanning electron microscopy and transmission electron microscopy including energy-filtered transmission electron microscopy and electron energy-loss spectroscopy. The amount of intermixing between the two phases at different strains was examined at the atomic scale using atom probe tomography as complimentary method. It is shown that Co particles are dissolved in the Cu matrix during severe plastic deformation to a remarkable extent and their size, number, and volume fraction were quantitatively determined during the deformation process. From the results, it can be concluded that supersaturated solid solutions up to 26 at.% Co in a fcc Cu–26 at.% Co alloy are obtained during deformation. However, the distribution of Co was found to be inhomogeneous even at the highest degree of investigated strain.

Loading...
Thumbnail Image
Item

Challenges and opportunities in mapping land use intensity globally

2013, Kuemmerle, Tobias, Erb, Karlheinz, Meyfroidt, Patrick, Müller, Daniel, Verburg, Peter H., Estel, Stephan, Haberl, Helmut, Hostert, Patrick, Jepsen, Martin R., Kastner, Thomas, Levers, Christian, Lindner, Marcus, Plutzar, Christoph, Verkerk, Pieter Johannes, van der Zanden, Emma H., Reenberg, Anette

Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research.

Loading...
Thumbnail Image
Item

Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes?

2015, Zeiger, Marco, Jäckel, Nicolas, Weingarth, Daniel, Presser, Volker

We present a comprehensive study on the influence of the synthesis atmosphere on the structure and properties of nanodiamond-derived carbon onions. Carbon onions were synthesized at 1300 and 1700 °C in high vacuum or argon flow, using rapid dynamic heating and cooling. High vacuum annealing yielded carbon onions with nearly perfect spherical shape. An increase in surface area was caused by a decrease in particle density when transitioning from sp3 to sp2 hybridization and negligible amounts of disordered carbon were produced. In contrast, carbon onions from annealing nanodiamonds in flowing argon are highly interconnected by few-layer graphene nanoribbons. The presence of the latter improves the electrical conductivity, which is reflected by an enhanced power handling ability of supercapacitor electrodes operated in an organic electrolyte (1 M tetraethylammonium tetrafluoroborate in acetonitrile). Carbon onions synthesized in argon flow at 1700 °C show a specific capacitance of 20 F/g at 20 A/g current density and 2.7 V cell voltage which is an improvement of more than 40% compared to vacuum annealing. The same effect was measured for a synthesis temperature of 1300 °C, with a 140% higher capacitance at 20 A/g for argon flow compared to vacuum annealing.

Loading...
Thumbnail Image
Item

Detachment of an adhered micropillar from a dissimilar substrate

2015, Khaderi, S.N., Fleck, N.A., Arzt, E., McMeeking, R.M.

Abstract The mechanics of detachment is analysed for 2D flat-bottomed planar pillars and 3D cylindrical pillars from a dissimilar elastic substrate. Application of an axial stress to the free end of the pillar results in a singularity in stress at the corner with the substrate. An eigenvalue analysis reveals that the stress field near the corner is dominated by two singular eigenfields having eigenvalues ( λ 1 , λ 2 ) with corresponding intensities ( H 1 , H 2 ) . The asymptotic stress field σij is of the form σ ij = H 1 r λ 1 − 1 f ij ( λ 1 , θ ) + H 2 r λ 2 − 1 f ij ( λ 2 , θ ) , where fij describe the angular dependence θ of σij, and r is the radial distance from the corner. The stress intensities ( H 1 , H 2 ) are calculated numerically, using a domain integral approach, as a function of the elastic mismatch between the pillar and substrate. The singular zone extends across approximately 10 of the pillar diameter (in 3D) or pillar width (in 2D). Interfacial failure is predicted for an assumed crack emanating from the corner of pillar and substrate. For the case of an interfacial crack that resides within the domain of corner singularity, a boundary layer analysis is performed to calculate the dependence of the interfacial stress intensity factor K upon ( H 1 , H 2 ) . When the crack extends beyond the domain of corner singularity, it is necessary to consider the full geometry in order to obtain K. A case study explores the sensitivity of the pull-off stress to the flaw size and to the degree of material mismatch. The study has implications for the optimum design of adhesive surface micropatterns, for bonding to either stiffer or more compliant substrates.