Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A framework for modeling adaptive forest management and decision making under climate change

2017, Yousefpour, Rasoul, Temperli, Christian, Bredahl Jacobsen, Jette, Thorsen, Bo Jellesmark, Meilby, Henrik, Lexer, Manfred J., Lindner, Marcus, Bugmann, Harald, Borges, Jose G., Palma, João H.N., Ray, Duncan, Zimmermann, Niklaus E., Delzon, Sylvain, Kremer, Antoine, Kramer, Koen, Reyer, Christopher P.O., Lasch-Born, Petra, Garcia-Gonzalo, Jordi, Hanewinkel, Marc

Adapting the management of forest resources to climate change involves addressing several crucial aspects to provide a valid basis for decision making. These include the knowledge and belief of decision makers, the mapping of management options for the current as well as anticipated future bioclimatic and socioeconomic conditions, and the ways decisions are evaluated and made. We investigate the adaptive management process and develop a framework including these three aspects, thus providing a structured way to analyze the challenges and opportunities of managing forests in the face of climate change. We apply the framework for a range of case studies that differ in the way climate and its impacts are projected to change, the available management options, and how decision makers develop, update, and use their beliefs about climate change scenarios to select among adaptation options, each being optimal for a certain climate change scenario. We describe four stylized types of decision-making processes that differ in how they (1) take into account uncertainty and new information on the state and development of the climate and (2) evaluate alternative management decisions: the “no-change,” the “reactive,” the “trend-adaptive,” and the “forward-looking adaptive” decision-making types. Accordingly, we evaluate the experiences with alternative management strategies and recent publications on using Bayesian optimization methods that account for different simulated learning schemes based on varying knowledge, belief, and information. Finally, our proposed framework for identifying adaptation strategies provides solutions for enhancing forest structure and diversity, biomass and timber production, and reducing climate change-induced damages. They are spatially heterogeneous, reflecting the diversity in growing conditions and socioeconomic settings within Europe.

Loading...
Thumbnail Image
Item

A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe

2016, Zanatta, M., Gysel, M., Bukowiecki, N., Müller, T., Weingartner, E., Areskoug, H., Fiebig, M., Yttri, K.E., Mihalopoulos, N., Kouvarakis, G., Beddows, D., Harrison, R.M., Cavalli, F., Putaud, J.P., Spindler, G., Wiedensohler, A., Alastuey, A., Pandolfi, M., Sellegri, K., Swietlicki, E., Jaffrezo, J.L., Baltensperger, U., Laj, P.

A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (σap) divided by elemental carbon mass concentration (mEC). σap and mEC have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. σap was determined using filter based absorption photometers and mEC using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of σap at a wavelength of 637 nm vary between 0.66 and 1.3 Mm−1 in southern Scandinavia, 3.7–11 Mm−1 in Central Europe and the British Isles, and 2.3–2.8 Mm−1 in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 μg m−3 in southern Scandinavia, 0.28–1.1 in Central Europe and the British Isles, and 0.22–0.26 in the Mediterranean. Both σap and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m2 g−1 (geometric standard deviation = 1.33) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However, absolute uncertainties of the reported MAC values remain as high as ± 30–70% due to the lack of appropriate reference methods and calibration materials. The mass ratio between elemental carbon and non-light-absorbing matter was used as a proxy for the thickness of coatings around the BC cores, in order to assess the influence of the mixing state on the MAC of BC. Indeed, the MAC was found to increase with increasing values of the coating thickness proxy. This provides evidence that coatings do increase the MAC of atmospheric BC to some extent, which is commonly referred to as lensing effect.