Search Results

Now showing 1 - 10 of 102
Loading...
Thumbnail Image
Item

Energy estimates and model order reduction for stochastic bilinear systems

2018, Redmann, Martin

In this paper, we investigate a large-scale stochastic system with bilinear drift and linear diffusion term. Such high dimensional systems appear for example when discretizing a stochastic partial differential equations in space. We study a particular model order reduction technique called balanced truncation (BT) to reduce the order of spatially-discretized systems and hence reduce computational complexity. We introduce suitable Gramians to the system and prove energy estimates that can be used to identify states which contribute only very little to the system dynamics. When BT is applied the reduced system is obtained by removing these states from the original system. The main contribution of this paper is an L2-error bound for BT for stochastic bilinear systems. This result is new even for deterministic bilinear equations. In order to achieve it, we develop a new technique which is not available in the literature so far.

Loading...
Thumbnail Image
Item

Measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank energy

2018, Lasarzik, Robert

In this article, we prove the existence of measure-valued solutions to the EricksenLeslie system equipped with the OseenFrank energy. We introduce the concept of generalized gradient Young measures. Via a Galerkin approximation, we show the existence of weak solutions to a regularized system and attain measure-valued solutions for vanishing regularization. Additionally, it is shown that the measure-valued solution fulfills an energy inequality.

Loading...
Thumbnail Image
Item

On forward and inverse uncertainty quantification for models involving hysteresis operators

2018, Klein, Olaf, Davino, Daniele, Visone, Ciro

Parameters within hysteresis operators modeling real world objects have to be identified from measurements and are therefore subject to corresponding errors. To investigate the influence of these errors, the methods of Uncertainty Quantification (UQ) are applied.

Loading...
Thumbnail Image
Item

Light bullets in a time-delay model of a wide-aperture mode-locked semiconductor laser

2018, Pimenov, Alexander, Javaloyes, Julien, Gurevich, Svetlana V., Vladimirov, Andrei G.

Recently, a mechanism of formation of light bullets (LBs) in wide-aperture passively modelocked lasers was proposed. The conditions for existence and stability of these bullets, found in the long cavity limit, were studied theoretically under the mean field (MF) approximation using a Haus-type model equation. In this paper we relax the MF approximation and study LB formation in a model of a wide-aperture three section laser with a long diffractive section and short absorber and gain sections. To this end we derive a nonlocal delay-differential equation (NDDE) model and demonstrate by means of numerical simulations that this model supports stable LBs. We observe that the predictions about the regions of existence and stability of the LBs made previously using MF laser models agree well with the results obtained using the NDDE model. Moreover, we demonstrate that the general conclusions based upon the Haus model that regard the robustness of the LBs remain true in the NDDE model valid beyond the MF approximation, when the gain, losses and diffraction per cavity round-trip are not small perturbations anymore.

Loading...
Thumbnail Image
Item

Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations

2019, Emmrich, Etienne, Lasarzik, Robert

A nonlinear model due to Soddemann et al. [37] and Stewart [38] describing incompressible smectic-A liquid crystals under flow is studied. In comparison to previously considered models, this particular model takes into account possible undulations of the layers away from equilibrium, which has been observed in experiments. The emerging decoupling of the director and the layer normal is incorporated by an additional evolution equation for the director. Global existence of weak solutions to this model is proved via a Galerkin approximation with eigenfunctions of the associated linear differential operators in the three-dimensional case.

Loading...
Thumbnail Image
Item

Extremal decomposition for random Gibbs measures

2018, Cotar, Codina, Jahnel, Benedikt, Külske, Christof

The concept of metastate measures on the states of a random spin system was introduced to be able to treat the large-volume asymptotics for complex quenched random systems, like spin glasses, which may exhibit chaotic volume dependence in the strong-coupling regime. We consider the general issue of the extremal decomposition for Gibbsian specifications which depend measurably on a parameter that may describe a whole random environment in the infinite volume. Given a random Gibbs measure, as a measurable map from the environment space, we prove measurability of its decomposition measure on pure states at fixed environment, with respect to the environment. As a general corollary we obtain that, for any metastate, there is an associated decomposition metastate, which is supported on the extremes for almost all environments, and which has the same barycenter.

Loading...
Thumbnail Image
Item

The dielectric constant of liquid electrolytes obtained from periodic homogenization theory

2018, Landstorfer, Manuel

The dielectric constant of an electrolytic solution is known to decrease with increasing salt concentration. This effect, frequently called dielectric decrement, is experimentally found for many salts and solvents and shows an almost linear decrease up to a certain salt concentration. However, the actual origin of this concentration dependence is yet unclear, and many different theoretical approaches investigate this effect. Here I present an investigation based on microscopic Maxwell equations and periodic homogenization theory. The microscopic perception of anions and cations forming a pseudo lattice in the liquid solution is exploited by multi-scale asymptotic expansions, where the inverse Avogadro number arises as small scaling parameter. This leads to a homogenized Poisson equation on the continuum scale with an effective or homogenized dielectric constant that accounts for microscopic field effects in the pseudo lattice. Incomplete dissociation is further considered at higher salt concentrations due to solvation effects. The numerically computed homogenized dielectric constant is then compared to experimental data of NaCl and shows a remarkable qualitative and quantitative agreement in the concentration range of (0 5)mol L.

Loading...
Thumbnail Image
Item

Dynamics of an inhomogeneously broadened passively mode-locked laser

2018, Pimenov, Alexander, Vladimirov, Andrei G.

We study theoretically the effect of inhomogeneous broadening of the gain and absorption lines on the dynamics of a passively mode-locked laser. We demonstrate numerically using travelling wave equations the formation of a Lamb-dip instability and suppression of Q-switching in a laser with large inhomogeneous broadening. We derive simplified delay-differential equation model for a mode-locked laser with inhomogeneously broadened gain and absorption lines and perform numerical bifurcation analysis of this model.

Loading...
Thumbnail Image
Item

Multiscale modeling of vascularized tissues via non-matching immersed methods

2018, Heltai, Luca, Caiazzo, Alfonso

We consider a multiscale approach based on immersed methods for the efficient computational modeling of tissues composed of an elastic matrix (in two or three-dimensions) and a thin vascular structure (treated as a co-dimension two manifold) at a given pressure. We derive different variational formulations of the coupled problem, in which the effect of the vasculature can be surrogated in the elasticity equations via singular or hyper-singular forcing terms. These terms only depends on information defined on co-dimension two manifolds (such as vessel center line, cross sectional area, and mean pressure over cross section), thus drastically reducing the complexity of the computational model. We perform several numerical tests, ranging from simple cases with known exact solutions to the modeling of materials with random distributions of vessels. In the latter case, we use our immersed method to perform an in silico characterization of the mechanical properties of the effective biphasic material tissue via statistical simulations.

Loading...
Thumbnail Image
Item

Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy

2018, Lasarzik, Robert

We analyze the EricksenLeslie system equipped with the OseenFrank energy in three space dimensions. Recently, the author introduced the concept of measure-valued solutions to this system and showed the global existence of these generalized solutions. In this paper, we show that suitable measure-valued solutions, which fulfill an associated energy inequality, enjoy the weak-strong uniqueness property, i. e. the measure-valued solution agrees with a strong solution if the latter exists. The weak-strong uniqueness is shown by a relative energy inequality for the associated nonconvex energy functional.