Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Analysis of nucleation events in the European boundary layer using the regional aerosol-climate model REMO-HAM with a solar radiation-driven OH-proxy

2014, Pietikäinen, J.-P., Mikkonen, S., Hamed, A., Hienola, A.I., Birmili, W., Kulmala, M., Laaksonen, A.

This work describes improvements in the regional aerosol–climate model REMO-HAM in order to simulate more realistically the process of atmospheric new particle formation (NPF). A new scheme was implemented to simulate OH radical concentrations using a proxy approach based on observations and also accounting for the effects of clouds upon OH concentrations. Second, the nucleation rate calculation was modified to directly simulate the formation rates of 3 nm particles, which removes some unnecessary steps in the formation rate calculations used earlier in the model. Using the updated model version, NPF over Europe was simulated for the periods 2003–2004 and 2008–2009. The statistics of the simulated particle formation events were subsequently compared to observations from 13 ground-based measurement sites. The new model shows improved agreement with the observed NPF rates compared to former versions and can simulate the event statistics realistically for most parts of Europe.

Loading...
Thumbnail Image
Item

Multichannel analysis of correlation length of SEVIRI images around ground-based cloud observatories to determine their representativeness

2015, Slobodda, J., Hünerbein, A., Lindstrot, R., Preusker, R., Ebell, K., Fischer, J.

Images of measured radiance in different channels of the geostationary Meteosat-9 SEVIRI instrument are analysed with respect to the representativeness of the observations of eight cloud observatories in Europe (e.g. measurements from cloud radars or microwave radiometers). Cloudy situations are selected to get a time series for every pixel in a 300 km × 300 km area centred around each ground station. Then a cross correlation of each time series to the pixel nearest to the corresponding ground site is calculated. In the end a correlation length is calculated to define the representativeness. It is found that measurements in the visible and near infrared channels, which respond to cloud physical properties, are correlated in an area with a 1 to 4 km radius, while the thermal channels, that correspond to cloud top temperature, are correlated to a distance of about 20 km. This also points to a higher variability of the cloud microphysical properties inside a cloud than of the cloud top temperature. The correlation length even increases for the channels at 6.2, 7.3 and 9.7 μm. They respond to radiation from the upper atmospheric layers emitted by atmospheric gases and higher level clouds, which are more homogeneous than low-level clouds. Additionally, correlations at different distances, corresponding to the grid box sizes of forecast models, were compared. The results suggest the possibility of comparisons between instantaneous cloud observations from ground sites and regional forecast models and ground-based measurements. For larger distances typical for global models the correlations decrease, especially for short-wave measurements and corresponding cloud products. By comparing daily means, the correlation length of each station is increased to about 3 to 10 times the value of instantaneous measurements and also the comparability to models grows.

Loading...
Thumbnail Image
Item

Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol

2017, Ng, Nga Lee, Brown, Steven S., Archibald, Alexander T., Atlas, Elliot, Cohen, Ronald C., Crowley, John N., Day, Douglas A., Donahue, Neil M., Fry, Juliane L., Fuchs, Hendrik, Griffin, Robert J., Guzman, Marcelo I., Herrmann, Hartmut, Hodzic, Alma, Iinuma, Yoshiteru, Jimenez, José L., Kiendler-Scharr, Astrid, Lee, Ben H., Luecken, Deborah J., Mao, Jingqiu, McLaren, Robert, Mutzel, Anke, Osthoff, Hans D., Ouyang, Bin, Picquet-Varrault, Benedicte, Platt, Ulrich, Pye, Havala O.T., Rudich, Yinon, Schwantes, Rebecca H., Shiraiwa, Manabu, Stutz, Jochen, Thornton, Joel A., Tilgner, Andreas, Williams, Brent J., Zaveri, Rahul A.

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

Loading...
Thumbnail Image
Item

Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles

2011, Rose, D., Gunthe, S.S., Su, H., Garland, R.M., Yang, H., Berghof, M., Cheng, Y.F., Wehner, B., Achtert, P., Nowak, A., Wiedensohler, A., Takegawa, N., Kondo, Y., Hu, M., Zhang, Y., Andreae, M.O., Pöschl, U.

Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN) activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS), a volatility tandem differential mobility analyzer (VTDMA), and a continuous-flow CCN counter (DMT-CCNC). The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κa) could be parameterized as a function of organic and inorganic mass fractions (forg, finorg) determined by the AMS: κa,p=κorg·forg + κinorg·finorg. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κorg≈0.1 and κinorg≈0.6. The campaign average κa values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while forg decreased with particle size. At ~50 nm, forg was on average 60% and increased to almost 100% during a biomass burning event. The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27%) were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C) and effective hygroscopicity parameters around κLV≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κt) could be parameterized as a function of κa,p and the number fraction of low volatility particles determined by VTDMA (φLV): κt,p=κa,p−φLV·(κa,p−κLV). Based on κ values derived from AMS and VTDMA data, the observed CCN number concentrations (NCCN,S≈102–104 cm−3 at S = 0.068–0.47%) could be efficiently predicted from the measured particle number size distribution. The mean relative deviations between observed and predicted CCN concentrations were ~10% when using κt,p, and they increased to ~20% when using only κa,p. The mean relative deviations were not higher (~20%) when using an approximate continental average value of κ≈0.3, although the constant κ value cannot account for the observed temporal variations in particle composition and mixing state (diurnal cycles and biomass burning events). Overall, the results confirm that on a global and climate modeling scale an average value of κ≈0.3 can be used for approximate predictions of CCN number concentrations in continental boundary layer air when aerosol size distribution data are available without information about chemical composition. Bulk or size-resolved data on aerosol chemical composition enable improved CCN predictions resolving regional and temporal variations, but the composition data need to be highly accurate and complemented by information about particle mixing state to achieve high precision (relative deviations <20%).

Loading...
Thumbnail Image
Item

The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design

2014, Tjernström, M., Leck, C., Birch, C.E., Bottenheim, J.W., Brooks, B.J., Brooks, I.M., Bäcklin, L., Chang, R.Y.-W., de Leeuw, G., Di Liberto, L., de la Rosa, S., Granath, E., Graus, M., Hansel, A., Heintzenberg, J., Held, A., Hind, A., Johnston, P., Knulst, J., Martin, M., Matrai, P.A., Mauritsen, T., Müller, M., Norris, S.J., Orellana, M.V., Orsini, D.A., Paatero, J., Persson, P.O.G., Gao, Q., Rauschenberg, C., Ristovski, Z., Sedlar, J., Shupe, M.D., Sierau, B., Sirevaag, A., Sjogren, S., Stetzer, O., Swietlicki, E., Szczodrak, M., Vaattovaara, P., Wahlberg, N., Westberg, M., Wheeler, C.R.

The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.

Loading...
Thumbnail Image
Item

New developments in the representation of Saharan dust sources in the aerosol-climate model ECHAM6-HAM2

2016, Heinold, Bernd, Tegen, Ina, Schepanski, Kerstin, Banks, Jamie R.

In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT). The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters. An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.

Loading...
Thumbnail Image
Item

Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

2012, Hanschmann, T., Deneke, H., Roebeling, R., Macke, A.

In this study the shortwave cloud radiative effect (SWCRE) over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR) and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

Loading...
Thumbnail Image
Item

The regional aerosol-climate model REMO-HAM

2012, Pietikäinen, J.-P., O'Donnell, D., Teichmann, C., Karstens, U., Pfeifer, S., Kazil, J., Podzun, R., Fiedler, S., Kokkola, H., Birmili, W., O'Dowd, C., Baltensperger, U., Weingartner, E., Gehrig, R., Spindler, G., Kulmala, M., Feichter, J., Jacob, D., Laaksonen, A.

REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.