Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part II: Radar investigations and modelling studies

2006, Serafimovich, A., Zülicke, Ch., Hoffmann, P., Peters, D., Dalin, P., Singer, W.

We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5–5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.

Loading...
Thumbnail Image
Item

Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008-2010 based on CARIBIC observations

2013, Andersson, S.M., Martinsson, B.G., Friberg, J., Brenninkmeijer, C.A.M., Rauthe-Schöch, A., Hermann, M., van Velthoven, P.F.J., Zahn, A.

Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska), Sarychev (Russia) and also during the Eyjafjallajökull (Iceland) eruptions in the period 2008–2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10–12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajökull in spring 2010. Elemental concentrations of the collected aerosol were obtained by accelerator-based analysis. Aerosol from the Eyjafjallajökull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajökull were dominated by the ash and sulphate component (∼45% each) while samples collected in the tropopause region and LMS mainly consisted of sulphate (50–77%) and carbon (21–43%). These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e) of sulphur dioxide in the studied volcanic cloud was estimated to be 45 ± 22 days.

Loading...
Thumbnail Image
Item

Five-day planetary waves in the middle atmosphere from Odin satellite data and ground-based instruments in Northern Hemisphere summer 2003, 2004, 2005 and 2007

2008, Belova, A., Kirkwood, S., Murtagh, D., Mitchell, N., Singer, W., Hocking, W.

A number of studies have shown that 5-day planetary waves modulate noctilucent clouds and the closely related Polar Mesosphere Summer Echoes (PMSE) at the summer mesopause. Summer stratospheric winds should inhibit wave propagation through the stratosphere and, although some numerical models (Geisler and Dickinson, 1976) do show a possibility for upward wave propagation, it has also been suggested that the upward propagation may in practice be confined to the winter hemisphere with horizontal propagation of the wave from the winter to the summer hemisphere at mesosphere heights causing the effects observed at the summer mesopause. It has further been proposed (Garcia et al., 2005) that 5-day planetary waves observed in the summer mesosphere could be excited in-situ by baroclinic instability in the upper mesosphere. In this study, we first extract and analyze 5-day planetary wave characteristics on a global scale in the middle atmosphere (up to 54 km in temperature, and up to 68 km in ozone concentration) using measurements by the Odin satellite for selected days during northern hemisphere summer from 2003, 2004, 2005 and 2007. Second, we show that 5-day temperature fluctuations consistent with westward-traveling 5-day waves are present at the summer mesopause, using local ground-based meteor-radar observations. Finally we examine whether any of three possible sources of the detected temperature fluctuations at the summer mesopause can be excluded: upward propagation from the stratosphere in the summer-hemisphere, horizontal propagation from the winter-hemisphere or in-situ excitation as a result of the baroclinic instability. We find that in one case, far from solstice, the baroclinic instability is unlikely to be involved. In one further case, close to solstice, upward propagation in the same hemisphere seems to be ruled out. In all other cases, all or any of the three proposed mechanisms are consistent with the observations.

Loading...
Thumbnail Image
Item

An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

2016, Hermann, Markus, Weigelt, Andreas, Assmann, Denise, Pfeifer, Sascha, Müller, Thomas, Conrath, Thomas, Voigtländer, Jens, Heintzenberg, Jost, Wiedensohler, Alfred, Martinsson, Bengt G., Deshler, Terry, Brenninkmeijer, Carl A.M., Zahn, Andreas

The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System – Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130–1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

Loading...
Thumbnail Image
Item

Retrievals of chlorine chemistry kinetic parameters from Antarctic ClO microwave radiometer measurements

2011, Kremser, S., Schofield, R., Bodeker, G.E., Connor, B.J., Rex, M., Barret, J., Mooney, T., Salawitch, R.J., Canty, T., Frieler, K., Chipperfield, M.P., Langematz, U., Feng, W.

Key kinetic parameters governing the partitioning of chlorine species in the Antarctic polar stratosphere were retrieved from 28 days of chlorine monoxide (ClO) microwave radiometer measurements made during the late winter/early spring of 2005 at Scott Base (77.85° S, 166.75° E). During day-time the loss of the ClO dimer chlorine peroxide (ClOOCl) occurs mainly by photolysis. Some time after sunrise, a photochemical equilibrium is established and the ClO/ClOOCl partitioning is determined by the ratio of the photolysis frequency, J, and the dimer formation rate, kf. The values of J and kf from laboratory studies remain uncertain to a considerable extent, and as a complement to these ongoing studies, the goal of this work is to provide a constraint on that uncertainty based on observations of ClO profiles in the Antarctic. First an optimal estimation technique was used to derive J/kf ratios for a range of Keq values. The optimal estimation forward model was a photochemical box model that takes J, kf, and Keq as inputs, together with a priori profiles of activated chlorine (ClOx = ClO+2×ClOOCl), profiles of ozone, temperature, and pressure. JPL06 kinetics are used as a priori in the optimal estimation and for all other chemistry in the forward model. Using the more recent JPL09 kinetics results in insignificant differences in the retrieved value of J/kf. A complementary approach was used to derive the optimal kinetic parameters; the full parameter space of J, kf, Keq and ClOx was sampled to find the minimum in differences between measured and modelled ClO profiles. Furthermore, values of Keq up to 2.0 times larger than recommended by JPL06 were explored to test the sensitivity of the J/kf ratio to changes in Keq. The results show that the retrieved J/kf ratios bracket the range of 1.23 to 1.97 times the J/kf value recommended by JPL06 over the range of Keq values considered. The retrieved J/kf ratios lie in the lower half of the large uncertainty range of J/kf recommended by JPL06 and towards the upper portion of the smaller uncertainty range recommended by JPL09.

Loading...
Thumbnail Image
Item

Tropospheric forcing of the boreal polar vortex splitting in January 2003

2010, Peters, D.H.W., Vargin, P., Gabriel, A., Tsvetkova, N., Yushkov, V.

e dynamical evolution of the relatively warm stratospheric winter season 2002–2003 in the Northern Hemisphere was studied and compared with the cold winter 2004–2005 based on NCEP-Reanalyses. Record low temperatures were observed in the lower and middle stratosphere over the Arctic region only at the beginning of the 2002–2003 winter. Six sudden stratospheric warming events, including the major warming event with a splitting of the polar vortex in mid-January 2003, have been identified. This led to a very high vacillation of the zonal mean circulation and a weakening of the stratospheric polar vortex over the whole winter season. An estimate of the mean chemical ozone destruction inside the polar vortex showed a total ozone loss of about 45 DU in winter 2002–2003; that is about 2.5 times smaller than in winter 2004–2005. Embedded in a winter with high wave activity, we found two subtropical Rossby wave trains in the troposphere before the major sudden stratospheric warming event in January 2003. These Rossby waves propagated north-eastwards and maintained two upper tropospheric anticyclones. At the same time, the amplification of an upward propagating planetary wave 2 in the upper troposphere and lower stratosphere was observed, which could be caused primarily by those two wave trains. Furthermore, two extratropical Rossby wave trains over the North Pacific Ocean and North America were identified a couple of days later, which contribute mainly to the vertical planetary wave activity flux just before and during the major warming event. It is shown that these different tropospheric forcing processes caused the major warming event and contributed to the splitting of the polar vortex.

Loading...
Thumbnail Image
Item

Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign - Part I: Observations with collocated radars

2006, Hoffmann, P., Serafimovich, A., Peters, D., Dalin, P., Goldberg, R., Latteck, R.

During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR) near Andenes and the Swedish Rocket Range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E) and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.

Loading...
Thumbnail Image
Item

Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km

2010, Baumgarten, Gerd

A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E). The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS) at the iodine line 1109 (~532.260 nm). DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009.

Loading...
Thumbnail Image
Item

Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004

2008, Pancheva, D., Mukhtarov, P., Mitchell, N.J., Andonov, B., Merzlyakov, E., Singer, W., Murayama, Y., Kawamura, S., Xiong, J., Wan, W., Hocking, W., Fritts, D., Riggin, D., Meek, C., Manson, A.

The coupling of the dynamical regimes in the high- and low-latitude stratosphere and mesosphere during the major SSW in the Arctic winter of 2003/2004 has been studied. The UKMO zonal wind data were used to explore the latitudinal coupling in the stratosphere, while the coupling in the mesosphere was investigated by neutral wind measurements from eleven radars situated at high, high-middle and tropical latitudes. It was found that the inverse relationship between the variability of the zonal mean flows at high- and low-latitude stratosphere related to the SSW is produced by global-scale zonally symmetric waves. Their origin and other main features have been investigated in detail. Similar latitudinal dynamical coupling has been found for the mesosphere as well. Indirect evidence for the presence of zonally symmetric waves in the mesosphere has been found.

Loading...
Thumbnail Image
Item

Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements

2008, Sica, R.J., Izawa, M.R.M., Walker, K.A., Boone, C., Petelina, S.V., Argall, P.S., Bernath, P., Burns, G.B., Catoire, V., Collins, R.L., Daffer, W.H., De Clercq, C., Fan, Z.Y., Firanski, B.J., French, W.J.R., Gerard, P., Gerding, M., Granville, J., Innis, J.L., Keckhut, P., Kerzenmacher, T., Klekociuk, A.R., Kyrö, E., Lambert, J.C., Llewellyn, E.J., Manney, G.L., McDermid, I.S., Mizutani, K., Murayama, Y., Piccolo, C., Raspollini, P., Ridolfi, M., Robert, C., Steinbrecht, W., Strawbridge, K.B., Strong, K., Stübi, R., Thurairajah, B.

An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K) in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K) in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.