Search Results

Now showing 1 - 10 of 77
  • Item
    High spatial and temporal resolution cell manipulation techniques in microchannels
    (Cambridge : Royal Society of Chemistry, 2016) Novo, Pedro; Dell’Aica, Margherita; Janasek, Dirk; Zahedi, René P.
    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
  • Item
    Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry
    (Cambridge : Royal Society of Chemistry, 2015) Silina, Yuliya E.; Fink-Straube, Claudia; Hayen, Heiko; Volmer, Dietrich A.
    In this study, we propose a simple and rapid technique for characterization of free fatty acids and triacylglycerides (TAG) based on palladium nanoparticular (Pd-NP) surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS). The implemented Pd-NP material allowed detection of free fatty acids and TAGs exclusively as [M + K]+ ions in positive ion mode. Under negative ionization conditions, unusual trimetric structures were generated for free fatty acids, while TAGs underwent irreproducible degradation reactions. Importantly, the mass spectra obtained from Pd-NP targets in positive ion mode were very clean without interferences from matrix-derived ions in the low m/z range and readily enabled the detection of intact TAGs in vegetable oils without major fragmentation reactions as compared to conventional MALDI-MS, requiring only a minimal amount of sample preparation.
  • Item
    Carbons and electrolytes for advanced supercapacitors
    (Hoboken, NJ : Wiley, 2014) Presser, Volker
    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
  • Item
    Sintering of ultrathin gold nanowires for transparent electronics
    (Washington D.C. : American Chemical Society, 2015) Maurer, Johannes H.M.; González-García, Lola; Reiser, Beate; Kanelidis, Ioannis; Kraus, Tobias
    Ultrathin gold nanowires (AuNWs) with diameters below 2 nm and high aspect ratios are considered to be a promising base material for transparent electrodes. To achieve the conductivity expected for this system, oleylamine must be removed. Herein we present the first study on the conductivity, optical transmission, stability, and structure of AuNW networks before and after sintering with different techniques. Freshly prepared layers consisting of densely packed AuNW bundles were insulating and unstable, decomposing into gold spheres after a few days. Plasma treatments increased the conductivity and stability, coarsened the structure, and left the optical transmission virtually unchanged. Optimal conditions reduced sheet resistances to 50 Ω/sq.
  • Item
    Fast IR laser mapping ellipsometry for the study of functional organic thin films
    (Cambridge : Royal Society of Chemistry, 2015) Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten
    Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm−1, was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.
  • Item
    Enhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer deposition
    (Washington D.C. : American Chemical Society, 2016) Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Krüner, Benjamin; Grobelsek, Ingrid; Formanek, Petr; Choudhury, Soumyadip; Weingarth, Daniel; Presser, Volker
    Atomic layer deposition (ALD) is a facile process to decorate carbon surfaces with redox-active nanolayers. This is a particularly attractive route to obtain hybrid electrode materials for high performance electrochemical energy storage applications. Using activated carbon and carbon onions as representatives of substrate materials with large internal or external surface area, respectively, we have studied the enhanced energy storage capacity of vanadium oxide coatings. While the internal porosity of activated carbon readily becomes blocked by obstructing nanopores, carbon onions enable the continued deposition of vanadia within their large interparticle voids. Electrochemical benchmarking in lithium perchlorate in acetonitrile (1 M LiClO4) showed a maximum capacity of 122 mAh/g when using vanadia coated activated carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode. Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ∼85–91% after 7000 cycles for full-cell measurements.
  • Item
    Improving the zT value of thermoelectrics by nanostructuring: Tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids
    (Cambridge : Royal Society of Chemistry, 2016) Schaumann, Julian; Loor, Manuel; Ünal, Derya; Mudring, Anja; Heimann, Stefan; Hagemann, Ulrich; Schulz, Stephan; Maculewicz, Franziska; Schierning, Gabi
    A systematic study on the microwave-assisted thermolysis of the single source precursor (Et2Sb)2Te (1) in different asymmetric 1-alkyl-3-methylimidazolium- and symmetric 1,3-dialkylimidazolium-based ionic liquids (ILs) reveals the distinctive role of both the anion and the cation in tuning the morphology and microstructure of the resulting Sb2Te3 nanoparticles as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). A comparison of the electrical and thermal conductivities as well as the Seebeck coefficient of the Sb2Te3 nanoparticles obtained from different ILs reveals the strong influence of the specific IL, from which C4mimI was identified as the best solvent, on the thermoelectric properties of as-prepared nanosized Sb2Te3. This work provides design guidelines for ILs, which allow the synthesis of nanostructured thermoelectrics with improved performances.
  • Item
    Magnetic superexchange interactions: Trinuclear bis(oxamidato) versus bis(oxamato) type complexes
    (Cambridge : Royal Society of Chemistry, 2015) Abdulmalic, Mohammad A.; Aliabadi, Azar; Petr, Andreas; Krupskaya, Yulia; Kataev, Vladislav; Büchner, Bernd; Zaripov, Ruslan; Vavilova, Evgeniya; Voronkova, Violeta; Salikov, Kev; Hahn, Torsten; Kortus, Jens; Meva, Francois Eya’ane; Schaarschmidt, Dieter; Rüffer, Tobias
    The diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2) was treated with an excess of RNH2 in MeOH to cause the exclusive formation of the respective o-phenylenebis(N(R)-oxamides) (opboH4R2, R = Me 1, Et 2, nPr 3) in good yields. Treatment of 1–3 with half an equivalent of [Cu2(AcO)4(H2O)2] or one equivalent of [Ni(AcO)2(H2O)4] followed by the addition of four equivalents of [nBu4N]OH resulted in the formation of mononuclear bis(oxamidato) type complexes [nBu4N]2[M(opboR2)] (M = Ni, R = Me 4, Et 5, nPr 6; M = Cu, R = Me 7, Et 8, nPr 9). By addition of two equivalents of [Cu(pmdta)(NO3)2] to MeCN solutions of 7–9, novel trinuclear complexes [Cu3(opboR2)(L)2](NO3)2 (L = pmdta, R = Me 10, Et 11, nPr 12) could be obtained. Compounds 4–12 have been characterized by elemental analysis and NMR/IR spectroscopy. Furthermore, the solid state structures of 4–10 and 12 have been determined by single-crystal X-ray diffraction studies. By controlled cocrystallization, diamagnetically diluted 8 and 9 (1%) in the host lattice of 5 and 6 (99%) (8@5 and 9@6), respectively, in the form of single crystals have been made available, allowing single crystal ESR studies to extract all components of the g-factor and the tensors of onsite CuA and transferred NA hyperfine (HF) interaction. From these studies, the spin density distribution of the [Cu(opboEt2)]2− and [Cu(opbonPr2)]2− complex fragments of 8 and 9, respectively, could be determined. Additionally, as a single crystal ENDOR measurement of 8@5 revealed the individual HF tensors of the N donor atoms to be unequal, individual estimates of the spin densities on each N donor atom were made. The magnetic properties of 10–12 were studied by susceptibility measurements versus temperature to give J values varying from −96 cm−1 (10) over −104 cm−1 (11) to −132 cm−1 (12). These three trinuclear CuII-containing bis(oxamidato) type complexes exhibit J values which are comparable to and slightly larger in magnitude than those of related bis(oxamato) type complexes. In a summarizing discussion involving experimentally obtained ESR results (spin density distribution) of 8 and 9, the geometries of the terminal [Cu(pmdta)]2+ fragments of 12 determined by crystallographic studies, together with accompanying quantum chemical calculations, an approach is derived to explain these phenomena and to conclude if the spin density distribution of mononuclear bis(oxamato)/bis(oxamidato) type complexes could be a measure of the J couplings of corresponding trinuclear complexes.
  • Item
    Modeling the shape of ions in pyrite-type crystals
    (Basel : MDPI, 2014) Birkholz, Mario
    The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r
  • Item
    Synthesis and molecular structures of the lowest melting odd- and even-numbered a,b-unsaturated carboxylic acids—(E)-hept-2-enoic acid and (E)-oct-2-enoic acid
    (Basel : MDPI, 2016) Sonneck, Marcel; Spannenberg, Anke; Wohlrab, Sebastian; Peppel, Tim
    The molecular structures of the two lowest melting odd- and even-numbered α,β-unsaturated carboxylic acids—(E)-hept-2-enoic acid (C7) and (E)-oct-2-enoic acid (C8)—are herein reported. The title compounds were crystallized by slow evaporation of ethanolic solutions at −30 °C. C7 crystallizes in the triclinic space group P1¯ with two molecules in the unit cell and C8 in the monoclinic space group C2/c with eight molecules in the unit cell. The unit cell parameters for C7 are: a = 5.3049(2) Å, b = 6.6322(3) Å, c = 11.1428(5) Å, α = 103.972(3)°, β = 97.542(3)°, γ = 90.104(3)°, and V = 376.92(3) Å3 (T = 150(2) K). The unit cell parameters for C8 are: a = 19.032(10) Å, b = 9.368(5) Å, c = 11.520(6) Å, β = 123.033(11)°, and V = 1721.80(16) Å3 (T = 200(2) K).