Search Results

Now showing 1 - 10 of 313
  • Item
    Trend detection in river flow indices in Poland
    (Heidelberg : Springer, 2018) Piniewski, Mikołaj; Marcinkowski, Paweł; Kundzewicz, Zbigniew W.
    The issue of trend detection in long time series of river flow records is of vast theoretical interest and considerable practical relevance. Water management is based on the assumption of stationarity; hence, it is crucial to check whether taking this assumption is justified. The objective of this study is to analyse long-term trends in selected river flow indices in small- and medium-sized catchments with relatively unmodified flow regime (semi-natural catchments) in Poland. The examined indices describe annual and seasonal average conditions as well as annual extreme conditions—low and high flows. The special focus is on the spatial analysis of trends, carried out on a comprehensive, representative data set of flow gauges. The present paper is timely, as no spatially comprehensive studies (i.e. covering the entire Poland or its large parts) on trend detection in time series of river flow have been done in the recent 15 years or so. The results suggest that there is a strong random component in the river flow process, the changes are weak and the spatial pattern is complex. Yet, the results of trend detection in different indices of river flow in Poland show that there exists a spatial divide that seems to hold quite generally for various indices (annual, seasonal, as well as low and high flow). Decreases of river flow dominate in the northern part of the country and increases usually in the southern part. Stations in the central part show mostly ‘no trend’ results. However, the spatial gradient is apparent only for the data for the period 1981–2016 rather than for 1956–2016. It seems also that the magnitude of increases of river flow is generally lower than that of decreases.
  • Item
    Changes of snow cover in Poland
    (Heidelberg : Springer, 2017) Szwed, Małgorzata; Pin´skwar, Iwona; Kundzewicz, Zbigniew W.; Graczyk, Dariusz; Mezghani, Abdelkader
    The present paper examines variability of characteristics of snow cover (snow cover depth, number of days with snow cover and dates of beginning and end of snow cover) in Poland. The study makes use of a set of 43 long time series of observation records from the stations in Poland, from 1952 to 2013. To describe temporal changes in snow cover characteristics, the intervals of 1952–1990 and of 1991–2013 are compared and trends in analysed data are sought (e.g., using the Mann–Kendall test). Observed behaviour of time series of snow-related variables is complex and not easy to interpret, for instance because of the location of the research area in the zone of transitional moderate climate, where strong variability of climate events is one of the main attributes. A statistical link between the North Atlantic Oscillation (NAO) index and the snow cover depth, as well as the number of snow cover days is found.
  • Item
    What can we learn from the projections of changes of flow patterns? Results from Polish case studies
    (Heidelberg : Springer, 2017) Piniewski, Mikołaj; Meresa, Hadush Kidane; Romanowicz, Renata; Osuch, Marzena; Szczes´niak, Mateusz; Kardel, Ignacy; Okruszko, Tomasz; Mezghani, Abdelkader; Kundzewicz, Zbigniew W.
    River flow projections for two future time horizons and RCP 8.5 scenario, generated by two projects (CHASE-PL and CHIHE) in the Polish-Norwegian Research Programme, were compared. The projects employed different hydrological models over different spatial domains. The semi-distributed, process-based, SWAT model was used in the CHASE-PL project for the entire Vistula and Odra basins area, whilst the lumped, conceptual, HBV model was used in the CHIHE project for eight Polish catchments, for which the comparison study was made. Climate projections in both studies originated from the common EURO-CORDEX dataset, but they were different, e.g. due to different bias correction approaches. Increases in mean annual and seasonal flows were projected in both studies, yet the magnitudes of changes were largely different, in particular for the lowland catchments in the far future. The HBV-based increases were significantly higher in the latter case than the SWAT-based increases in all seasons except winter. Uncertainty in projections is high and creates a problem for practitioners.
  • Item
    Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces
    (New York : American Institute of Physics, 2017) Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella
    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.
  • Item
    Toward light‐regulated living biomaterials
    (Hoboken, NJ : Wiley, 2018) Sankaran, Shrikrishnan; Zhao, Shifang; Muth, Christina; Paez, Julieta; Del Campo, Aránzazu
    Living materials are an emergent material class, infused with the productive,adaptive, and regenerative properties of living organisms. Property regulation in living materials requires encoding responsive units in the living components to allow external manipulation of their function. Here, an optoregulated Escherichia coli (E. coli)-based living biomaterial that can be externally addressed using light to interact with mammalian cells is demonstrated. This is achieved by using a photoactivatable inducer of gene expression and bacterial surface display technology to present an integrin-specific miniprotein on the outer membrane of an endotoxin-free E. coli strain. Hydrogel surfaces functionalized with the bacteria can expose cell adhesive molecules upon in situ light-activation, and trigger cell adhesion. Surface immobilized bacteria are able to deliver a fluorescent protein to the mammalian cells with which they are interacting, indicating the potential of such a bacterial material to deliver molecules to cells in a targeted manner.
  • Item
    Magnetic properties of GaAs-Fe3Si core-shell nanowires — A comparison of ensemble and single nanowire investigation
    (New York : American Institute of Physics, 2017) Hilse, Maria; Jenichen, Bernd; Herfort, Jens
    On the basis of semiconductor-ferromagnet GaAs-Fe3Si core-shell nanowires (Nws) we compare the facilities of magnetic Nw ensemble measurements by superconducting quantum interference device magnetometry versus investigations on single Nws by magnetic force microscopy and computational micromagnetic modeling. Where a careful analysis of ensemble measurements backed up by transmission electron microscopy gave no insights on the properties of the Nw shells, single Nw investigation turned out to be absolutely essential.
  • Item
    The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films
    (New York : American Institute of Physics, 2017) Yuan, Feifei; Iida, Kazumasa; Grinenko, Vadim; Chekhonin, Paul; Pukenas, Aurimas; Skrotzki, Werner; Sakoda, Masahito; Naito, Michio; Sala, Alberto; Putti, Marina; Yamashita, Aichi; Takano, Yoshihiko; Shi, Zhixiang; Nielsch, Kornelius; Hühne, Ruben
    Epitaxial Fe(Se,Te) thin films were prepared by pulsed laser deposition on (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT), CaF2-buffered LSAT and bare CaF2 substrates, which exhibit an almost identical in-plane lattice parameter. The composition of all Fe(Se,Te) films were determined to be FeSe0.7Te0.3 by energy dispersive X-ray spectroscopy, irrespective of the substrate. Albeit the lattice parameters of all templates have comparable values, the in-plane lattice parameter of the FeSe0.7Te0.3 films varies significantly. We found that the superconducting transition temperature (Tc) of FeSe0.7Te0.3 thin films is strongly correlated with their a-axis lattice parameter. The highest Tc of over 19 K was observed for the film on bare CaF2 substrate, which is related to unexpectedly large in-plane compressive strain originating mostly from the thermal expansion mismatch between the FeSe0.7Te0.3 film and the substrate.
  • Item
    Giant faraday rotation through ultra-small Fe0n clusters in superparamagnetic FeO-SiO2 vitreous films
    (Hoboken : Wiley, 2017) Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A.; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar
    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass‐based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of xFeO·(100 − x)SiO2, unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.
  • Item
    Germania and alumina dopant diffusion and viscous flow effects at preparation of doped optical fibers
    (Ostrava : VSB - Technical University of Ostrava and University of Zilina Faculty of Electrical Engineering, 2017) Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Unger, Sonja; Schwuchow, Anka; Elsmann, Tino; Dellith, Jan; Aichele, Claudia; Fatobene Ando, Ron; Bartelt, Hartmut
    We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT) technique). The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.
  • Item
    Stellar magnetic activity and variability of oscillation parameters: An investigation of 24 solar-like stars observed by Kepler
    (Les Ulis : EDP Sciences, 2017) Kiefer, René; Schad, Ariane; Davies, Guy; Roth, Markus
    Context. The Sun and solar-like stars undergo activity cycles for which the underlying mechanisms are not well understood. The oscillations of the Sun are known to vary with its activity cycle and these changes provide diagnostics on the conditions below the photosphere. Kepler has detected solar-like oscillations in hundreds of stars but as of yet, no widespread detection of signatures of magnetic activity cycles in the oscillation parameters of these stars have been reported. Aims. We analysed the photometric short cadence Kepler time series of a set of 24 solar-like stars, which were observed for at least 960 d each, with the aim to find signatures of stellar magnetic activity in the oscillation parameters. Methods. We analyse the temporal evolution of oscillation parameters by measuring mode frequency shifts, changes in the height of the p-mode envelope, as well as granulation timescales. Results. For 23 of the 24 investigated stars, we find significant frequency shifts in time. We present evidence for magnetic activity in six of these stars. We find that the amplitude of the frequency shifts decreases with stellar age and rotation period. For KIC 8006161 (the most prominent example), we find that frequency shifts are smallest for the lowest and largest for the highest p-mode frequencies, as they are for the Sun. Conclusions. These findings show that magnetic activity can be routinely observed in the oscillation parameters for solar-like stars, which opens up the possibility of placing the solar activity cycle in the context of other stars by asteroseismology.