Search Results

Now showing 1 - 5 of 5
  • Item
    An alternative to field retting: Fibrous materials based on wet preserved hemp for the manufacture of composites
    (Basel : MDPI AG, 2019) Gusovius, H.-J.; Lühr, C.; Hoffmann, T.; Pecenka, R.; Idler, C.
    A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.
  • Item
    The future agricultural biogas plant in Germany: A vision
    (Basel : MDPI AG, 2019) Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A.
    After nearly two decades of subsidized and energy crop-oriented development, agricultural biogas production in Germany is standing at a crossroads. Fundamental challenges need to be met. In this article we sketch a vision of a future agricultural biogas plant that is an integral part of the circular bioeconomy and works mainly on the base of residues. It is flexible with regard to feedstocks, digester operation, microbial communities and biogas output. It is modular in design and its operation is knowledge-based, information-driven and largely automated. It will be competitive with fossil energies and other renewable energies, profitable for farmers and plant operators and favorable for the national economy. In this paper we discuss the required contribution of research to achieve these aims.
  • Item
    Process disturbances in agricultural biogas production—causes, mechanisms and effects on the biogas microbiome: A review
    (Basel : MDPI AG, 2019) Theuerl, S.; Klang, J.; Prochnow, A.
    Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H 2 ), ammonium/ammonia (NH 4 + /NH 3 ) or hydrogen sulphide (H 2 S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.
  • Item
    Production and purification of L-lactic acid in lab and pilot scales using sweet sorghum juice
    (Basel : MDPI AG, 2019) Olszewska-Widdrat, A.; Alexandri, M.; López-Gómez, J.P.; Schneider, R.; Mandl, M.; Venus, J.
    Sweet sorghum juice (SSJ) was evaluated as fermentation substrate for the production of l-lactic acid. A thermophilic Bacillus coagulans isolate was selected for batch fermentations without the use of additional nutrients. The first batch of SSJ (Batch A) resulted on higher lactic acid concentration, yield and productivity with values of 78.75 g·L−1, 0.78 g·g−1 and 1.77 g·L−1 h−1, respectively. Similar results were obtained when the process was transferred into the pilot scale (50 L), with corresponding values of 73 g·L−1, 0.70 g·g−1 and 1.47 g·L−1 h−1. A complete downstream process scheme was developed in order to separate lactic acid from the fermentation components. Coarse and ultra-filtration were employed as preliminary separation steps. Mono- and bipolar electrodialysis, followed by chromatography and vacuum evaporation were subsequently carried out leading to a solution containing 905.8 g·L−1 lactic acid, with an optical purity of 98.9%. The results of this study highlight the importance of the downstream process with respect to using SSJ for lactic acid production. The proposed downstream process constitutes a more environmentally benign approach to conventional precipitation methods.
  • Item
    Pre- And post-adoption beliefs about the diffusion and continuation of biogas-based cooking fuel technology in Pakistan
    (Basel : MDPI AG, 2019) Yasmin, N.; Grundmann, P.
    A high level of acceptance and adoption is necessary to facilitate the widespread utilization of renewable energy technologies for cooking, as such utilization is essential for displacing the population's massive dependence on fossil fuels and solid biomass. Economic and demographic aspects have been the focus of recent literature in exploring the adoption phenomenon of biogas technology. However, literature to date has given little attention to the behavioral factors and the perceptions of the end-users. Our study does not only include behavioral factors, but it employs a hybrid model to explore the continued attentions of users based on their post-adoption beliefs and performance expectations. Using a survey conducted in Pakistan in 2017, the study conducts a multivariate analysis through structural equation modeling to measure the effect of pre- and post-adoption beliefs and expectation on adoption and the continuing intention of households towards biogas technology. Results show that the acceptance of the households towards biogas technology is highly influenced by their perceptions on the benefits, as well as their trust in the technology. The perceived cost and risk attached to the technology are found to be negatively correlated with the acceptance. Households' intentions to continue the use of biogas technology is highly influenced by the satisfaction level of the users of biogas technology. With the integrated model of adoption and continuation, the study illustrates the dynamic process in obtaining a deeper understanding of a user's behavior to better formulate the policies for increasing the rate of technology adoption.