Search Results

Now showing 1 - 10 of 24
Loading...
Thumbnail Image
Item

Distinction of nucleobases - A tip-enhanced Raman approach

2011, Treffer, R., Lin, X., Bailo, E., Deckert-Gaudig, T., Deckert, V.

The development of novel DNA sequencing methods is one of the ongoing challenges in various fields of research seeking to address the demand for sequence information. However, many of these techniques rely on some kind of labeling or amplification steps. Here we investigate the intrinsic properties of tip-enhanced Raman scattering (TERS) towards the development of a novel, label-free, direct sequencing method. It is known that TERS allows the acquisition of spectral information with high lateral resolution and single-molecule sensitivity. In the presented experiments, single stranded adenine and uracil homopolymers were immobilized on different kinds of substrates (mica and gold nanoplates) and TERS experiments were conducted, which demonstrated the reproducibility of the technique. To elucidate the signal contributions from the specific nucleobases, TERS spectra were collected on single stranded calf thymus DNA with arbitrary sequence. The results show that, while the Raman signals with respect to the four nucleobases differ remarkably, specific markers can be determined for each respective base. The combination of sensitivity and reproducibility shows that the crucial demands for a sequencing procedure are met.

Loading...
Thumbnail Image
Item

Cryogenic time-domain multiplexer based on SQUID arrays and superconducting/normal conducting switches

2014, Beev, N., Kiviranta, M., Van Der Kuur, J., Bruijn, M., Brandel, O., Linzen, S., Fritzsch, L., Ahoranta, J., Penttilä, J., Roschier, L.

We have demonstrated the operation of a 12-channel Beyer-style SQUID-based time domain multiplexer. It was manufactured using a fabrication process that is cross-compatible between VTT and IPHT-Jena. The multiplexer consists of twelve 12-SQUID series arrays, each shunted by a Zappe-style interferometer array acting as a flux-controlled superconducting/normal conducting switch. By keeping all switches but one in the superconducting state, it is possible to select one active readout channel at a time. A flux feedback coil common to all SQUID arrays allows realization of a flux-locked loop. We present characteristics of the multiplexer and measurement data from experiments with a 25-pixel X-ray calorimeter array operated at T < 100 mK in a dilution refrigerator.

Loading...
Thumbnail Image
Item

Scalable, high power line focus diode laser for crystallizing of silicon thin films

2010, Lichtenstein, N., Baettig, R., Brunner, R., Müller, J., Valk, B., Gawlik, A., Bergmann, J., Falk, F.

We present the design and performance of a diode laser module producing a high intensity line focus at 808 nm for material processing. The design is based on a linear array of 7 laser bars and beam forming optics featuring a micro-optic homogenizer. The module delivers a total output power of 900 W at 140 A and peak intensity created in the focus area of 10.3 kW/cm2. Two systems with line length of 5 cm and 10 cm at a large working distance of 110 mm have been realized. The chosen concept allows scaling in length by joining multiple modules which is of interest for material processing in industrial applications. Application results from laser crystallization of amorphous silicon seed layers used in the fabrication of photovoltaic cells for solar panels are given.

Loading...
Thumbnail Image
Item

Observation of energetic terahertz pulses from relativistic solid density plasmas

2012, Gopal, A., May, T., Herzer, S., Reinhard, A., Minardi, S., Schubert, M., Dillner, U., Pradarutti, B., Polz, J., Gaumnitz, T., Kaluza, M.C., Jäckel, O., Riehemann, S., Ziegler, W., Gemuend, H-P., Meyer, H-G., Paulus, G.G.

We report the first experimental observation of terahertz (THz) radiation from the rear surface of a solid target while interacting with an intense laser pulse. Experimental and two-dimensional particle-in-cell simulations show that the observed THz radiation is mostly emitted at large angles to the target normal. Numerical results point out that a large part of the emission originates from a micron-scale plasma sheath at the rear surface of the target, which is also responsible for the ion acceleration. This opens a perspective for the application of THz radiation detection for on-site diagnostics of particle acceleration in laser-produced plasmas.

Loading...
Thumbnail Image
Item

Towards multiple readout application of plasmonic arrays

2011, Cialla, D., Weber, K., Böhme, R., Hübner, U., Schneidewind, H., Zeisberger, M., Mattheis, R., Möller, R., Popp, J.

In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.

Loading...
Thumbnail Image
Item

Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors

2019, George, Antony, Neumann, Christof, Kaiser, David, Mupparapu, Rajeshkumar, Lehnert, Tibor, Hübner, Uwe, Tang, Zian, Winter, Andreas, Kaiser, Ute, Staude, Isabelle, Turchanin, Andrey

Controlling the flow rate of precursors is essential for the growth of high quality monolayer single crystals of transition metal dichalcogenides (TMDs) by chemical vapor deposition. Thus, introduction of an excess amount of the precursors affects reproducibility of the growth process and results in the formation of TMD multilayers and other unwanted deposits. Here we present a simple method for controlling the precursor flow rates using the Knudsen-type effusion cells. This method results in a highly reproducible growth of large area and high density TMD monolayers. The size of the grown crystals can be adjusted between 10 and 200 μm. We characterized the grown MoS2 and WS2 monolayers by optical, atomic force and transmission electron microscopies as well as by x-ray photoelectron, Raman and photoluminescence spectroscopies, and by electrical transport measurements showing their high optical and electronic quality based on the single crystalline nature.

Loading...
Thumbnail Image
Item

Superconductivity in multi-phase Mg-B-O compounds

2012, Prikhna, T., Gawalek, W., Eisterer, M., Weber, H.W., Noudem, J., Sokolovsky, V., Chaud, X., Moshchil, V., Karpets, M., Kovylaev, V., Borimskiy, A., Tkach, V., Kozyrev, A., Kuznietsov, R., Dellith, J., Shmidt, C., Basyuk, T., Litzkendorf, D., Karau, F., Dittrich, U., Tomsic, M.

Structures of MgB2-based materials manufactured under pressure (up to 2 GPa) by different methods having high superconducting performance and connectivity are multiphase and contain different Mg-B-O compounds. Some oxygen can be incorporated into MgB2 and boron into MgO structures, MgBx (X=4-20) inclusions contain practically no oxygen. Regulating manufacturing temperature, pressure, introducing additions one can influence oxygen and boron distribution in the materials and thus, affect the formation, amount and sizes of Mg-B-O and MgBx inclusions and changing type of pinning, pinning force and so affect critical current density jc. The boron concentration increase in initial Mg and B mixture allows obtaining sample containing 88.5 wt% of MgB12 with Tc of 37.4 K (estimated magnetically).

Loading...
Thumbnail Image
Item

Single-electron transitions in one-dimensional native nanostructures

2014, Reiche, M., Kittler, M., Schmelz, M., Stolz, R., Pippel, E., Uebensee, H., Kermann, M., Ortlepp, T.

Low-temperature measurements proved the existence of a two-dimensional electron gas at defined dislocation arrays in silicon. As a consequence, single-electron transitions (Coulomb blockades) are observed. It is shown that the high strain at dislocation cores modifies the band structure and results in the formation of quantum wells along dislocation lines. This causes quantization of energy levels inducing the formation of Coulomb blockades.

Loading...
Thumbnail Image
Item

Observation of discrete, vortex light bullets

2014, Eilenberger, F., Prater, K., Minardi, S., Geiss, R., Röpke, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tünnermann, A., Pertsch, T.

We report the first experimental observation of vortex light bullets that are discrete, spatiotemporal, solitary waves with orbital angular momentum. We analyze conditions for their existence and investigate their rich properties and dynamics. Vortex light bullets are excited in fiber arrays with spatially shaped femtosecond pulses and analyzed with a spatiotemporal cross correlator. Most importantly, we find that they have entirely new stability properties, being robust against considerable degrees of perturbation in a limited range of energies. All experimental findings are backed up by rigorous simulations, giving further insight into the rich dynamics of vortex light bullets.

Loading...
Thumbnail Image
Item

Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential

2014, Ludwig, R., Stapf, M., Dutz, S., Müller, R., Teichgräber, U., Hilger, I.

Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features.In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels.The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed.Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia.