Search Results

Now showing 1 - 10 of 11
  • Item
    Ultrashort optical pulse propagation in terms of analytic signal
    (New York, NY : Hindawi, 2011) Amiranashvili, Sh.; Demircan, A.
    We demonstrate that ultrashort optical pulses propagating in a nonlinear dispersive medium are naturally described through incorporation of analytic signal for the electric field. To this end a second-order nonlinear wave equation is first simplified using a unidirectional approximation. Then the analytic signal is introduced, and all nonresonant nonlinear terms are eliminated. The derived propagation equation accounts for arbitrary dispersion, resonant four-wave mixing processes, weak absorption, and arbitrary pulse duration. The model applies to the complex electric field and is independent of the slowly varying envelope approximation. Still the derived propagation equation posses universal structure of the generalized nonlinear Schrdinger equation (NSE). In particular, it can be solved numerically with only small changes of the standard split-step solver or more complicated spectral algorithms for NSE. We present exemplary numerical solutions describing supercontinuum generation with an ultrashort optical pulse.
  • Item
    Adaptive smoothing of digital images: The R package adimpro
    (Los Angeles, Calif. : UCLA, Dept. of Statistics, 2007) Polzehl, J.; Tabelow, K.
    Digital imaging has become omnipresent in the past years with a bulk of applications ranging from medical imaging to photography. When pushing the limits of resolution and sensitivity noise has ever been a major issue. However, commonly used non-adaptive filters can do noise reduction at the cost of a reduced effective spatial resolution only. Here we present a new package adimpro for R, which implements the propagationseparation approach by (Polzehl arid Spokoiriy 2006) for smoothing digital images. This method naturally adapts to different structures of different size in the image and thus avoids oversmoothing edges and fine structures. We extend the method for imaging data with spatial correlation. Furthermore we show how the estimation of the dependence between variance and mean value can be included. We illustrate the use of the package through some examples.
  • Item
    Statistical parametric maps for functional MRI experiments in R: The package fmri
    (Los Angeles : UCLA, 2011) Tabelow, K.; Polzehl, J.
    The purpose of the package fmri is the analysis of single subject functional magnetic resonance imaging (fMRI) data. It provides fMRI analysis from time series modeling by a linear model to signal detection and publication quality images. Specifically, it implements structural adaptive smoothing methods with signal detection for adaptive noise reduction which avoids blurring of activation areas. Within this paper we describe the complete pipeline for fMRI analysis using fmri. We describe data reading from various medical imaging formats and the linear modeling used to create the statistical parametric maps. We review the rationale behind the structural adaptive smoothing algorithms and explain their usage from the package fmri. We demonstrate the results of such analysis using two experimental datasets. Finally, we report on the usage of a graphical user interface for some of the package functions.
  • Item
    Modification of Newton's law of gravity at very large distances
    (Amsterdam : Elsevier, 2002) Kirillov, A.A.; Turaev, D.
    We discuss a Modified Field Theory (MOFT) in which the number of fields can vary. It is shown that when the number of fields is conserved MOFT reduces to the standard field theory but interaction constants undergo an additional renormalization and acquire a dependence on spatial scales. In particular, the renormalization of the gravitational constant leads to the deviation of the law of gravity from the Newton's law in some range of scales rmin < r < rmax, in which the gravitational potential shows essentially logarithmic ∼ ln r (instead of 1/r) behavior. In this range, the renormalized value of the gravitational constant G increases and at scales r > rmax acquires a new constant value G′ ∼ Grmax/rmin. From the dynamical standpoint this looks as if every point source is surrounded with a halo of dark matter. It is also shown that if the maximal scale rmax is absent, the homogeneity of the dark matter in the Universe is consistent with a fractal distribution of baryons in space, in which the luminous matter is located on thin two-dimensional surfaces separated by empty regions of ever growing size.
  • Item
    Delay-induced dynamics and jitter reduction of passively mode-locked semiconductor lasers subject to optical feedback
    (Bristol : IOP, 2012) Otto, C.; LĂ¼dge, K.; Vladimirov, A.G.; Wolfrum, M.; Schöll, E.
    We study a passively mode-locked semiconductor ring laser subject to optical feedback from an external mirror. Using a delay differential equation model for the mode-locked laser, we are able to systematically investigate the resonance effects of the inter-spike interval time of the laser and the roundtrip time of the light in the external cavity (delay time) for intermediate and long delay times. We observe synchronization plateaus following the ordering of the well-known Farey sequence. Our results show that in agreement with the experimental results a reduction of the timing jitter is possible if the delay time is chosen close to an integer multiple of the inter-spike interval time of the laser without external feedback. Outside the main resonant regimes the timing jitter is drastically increased by the feedback.
  • Item
    Toward mixed-element meshing based on restricted Voronoi diagrams
    (Amsterdam [u.a.] : Elsevier, 2014) Pellerin, J.; LĂ©vy, B.; Caumon, G.
    In this paper we propose a method to generate mixed-element meshes (tetrahedra, triangular prisms, square pyramids) for B-Rep models. The vertices, edges, facets, and cells of the final volumetric mesh are determined from the combinatorial analysis of the intersections between the model components and the Voronoi diagram of sites distributed to sample the model. Inside the volumetric regions, Delaunay tetrahedra dual of the Voronoi diagram are built. Where the intersections of the Voronoi cells with the model surfaces have a unique connected component, tetrahedra are modified to fit the input triangulated surfaces. Where these intersections are more complicated, a correspondence between the elements of the Voronoi diagram and the elements of the mixedelement mesh is used to build the final volumetric mesh. The method which was motivated by meshing challenges encountered in geological modeling is demonstrated on several 3D synthetic models of subsurface rock volumes.
  • Item
    Effective Numerical Algorithm for Simulations of Beam Stabilization in Broad Area Semiconductor Lasers and Amplifiers
    (Milton Park : Taylor and Francis Ltd., 2014) Radziunas, M.; ÄŒiegis, R.
    Abstract: A 2 + 1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented. The domain decomposition method is used to parallelize the sequential algorithm. The parallel algorithm is implemented by using Message Passing Interface system, results of computational experiments are presented and the scalability of the algorithm is analyzed. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts.
  • Item
    Well-being in amyotrophic lateral sclerosis: A pilot experience sampling study
    (Lausanne : Frontiers Research Foundation, 2014) Real, R.G.; Dickhaus, T.; Ludolph, A.; Hautzinger, M.; KĂ¼bler, A.
    Objective: The aim of this longitudinal study was to identify predictors of instantaneous well-being in patients with amyotrophic lateral sclerosis (ALS). Based on flow theory well-being was expected to be highest when perceived demands and perceived control were in balance, and that thinking about the past would be a risk factor for rumination which would in turn reduce well-being. Methods: Using the experience sampling method, data on current activities, associated aspects of perceived demands, control, and well-being were collected from 10 patients with ALS three times a day for two weeks. Results: Results show that perceived control was uniformly and positively associated with well-being, but that demands were only positively associated with well-being when they were perceived as controllable. Mediation analysis confirmed thinking about the past, but not thinking about the future, to be a risk factor for rumination and reduced well-being. Discussion: Findings extend our knowledge of factors contributing to well-being in ALS as not only perceived control but also perceived demands can contribute to well-being. They further show that a focus on present experiences might contribute to increased well-being.
  • Item
    Insulin adsorption to catheter materials used for intensive insulin therapy in critically ill patients: Polyethylene versus polyurethane - possible cause of variation in glucose control?
    (Sharjah : Bentham Science Publishers B.V., 2014) Ley, S.C.; Ammann, J.; Herder, C.; Dickhaus, T.; Hartmann, M.; Kindgen-Milles, D.
    Introduction: Restoring and maintaining normoglycemia by intensified insulin therapy in critically ill patients is a matter of ongoing debate since the risk of hypoglycemia may outweigh positive effects on morbidity and mortality. In this context, adsorption of insulin to different catheter materials may contribute to instability of glucose control. We studied the adsorption of insulin to different tubing materials in vitro and the effects on glycemic control in vivo. Materials and Methods: In vitro experiments: A syringe pump was filled with 50 IU insulin diluted to 50 ml saline. A flow of 2 ml/h was perfused through polyethylene (PET) or polyurethane (PUR) tubing. Insulin concentrations were measured at the end of the tube for 24 hours using Bradford's protein assay. In vivo study: In a randomized double-blinded cross-over design, 10 intensive care patients received insulin via PET and PUR tubes for 24 hours each, targeting blood glucose levels of 80-150 mg/dl. We measured blood glucose levels, the insulin dose required to maintain target levels, and serum insulin and C-peptide levels. Results: In vitro experiments: After the start of the insulin infusion, only 20% (median, IQR 20-27) (PET) and 22% (IQR 16-27) (PUR) of the prepared insulin concentration were measured at the end of the 2 meter tubing. Using PET, after one hour infusion the concentration increased to 34% (IQR 29-36) and did not increase significantly during the next 24 hours (39% (IQR 39-40)). Using PUR, higher concentrations were detected than for PET at every measurement from 1 hour (82% (IQR 70-86)) to 24 hours (79% (IQR 64-87)). In vivo study: Glycemic control was effective and not different between groups. Significantly higher volumes of insulin solution had to be infused with PET compared to PUR (median PET 70.0 (IQR 56-82) ml vs. PUR 42 (IQR 31-63) ml; p=0.0015). Serum insulin concentrations did not decrease significantly one hour after changing to PET or PUR tubing. Conclusion: Polyurethane tubing systems allow application of insulin with significantly lower adsorption rates than polyethylene tubing systems. As a consequence, less insulin solution has to be infused to patients for effective blood glucose control. Tubing material of the insulin infusion may be crucial for safe and effective glycemic control in critically ill patients.
  • Item
    A propagation-separation approach to estimate the autocorrelation in a time-series
    (Göttingen : Copernicus, 2008) Divine, D.V.; Polzehl, J.; Godtliebsen, F.
    The paper presents an approach to estimate parameters of a local stationary AR(1) time series model by maximization of a local likelihood function. The method is based on a propagation-separation procedure that leads to data dependent weights defining the local model. Using free propagation of weights under homogeneity, the method is capable of separating the time series into intervals of approximate local stationarity. Parameters in different regions will be significantly different. Therefore the method also serves as a test for a stationary AR(1) model. The performance of the method is illustrated by applications to both synthetic data and real time-series of reconstructed NAO and ENSO indices and GRIP stable isotopes.