Search Results

Now showing 1 - 6 of 6
  • Item
    Ship-borne aerosol profiling with lidar over the Atlantic Ocean: From pure marine conditions to complex dust-smoke mixtures
    (Göttingen : Copernicus GmbH, 2018) Bohlmann, S.; Baars, H.; Radenz, M.; Engelmann, R.; Macke, A.
    The multi-wavelength Raman lidar PollyXT has been regularly operated aboard the research vessel Polarstern on expeditions across the Atlantic Ocean from north to south and vice versa. The lidar measurements of the RV Polarstern cruises PS95 from Bremerhaven, Germany, to Cape Town, Republic of South Africa (November 2015), and PS98 from Punta Arenas, Chile, to Bremerhaven, Germany (April/May 2016), are presented and analysed in detail. The latest set-up of PollyXT allows improved coverage of the marine boundary layer (MBL) due to an additional near-range receiver. Three case studies provide an overview of the aerosol detected over the Atlantic Ocean. In the first case, marine conditions were observed near South Africa on the autumn cruise PS95. Values of optical properties (depolarisation ratios close to zero, lidar ratios of 23 sr at 355 and 532 nm) within the MBL indicate pure marine aerosol. A layer of dried marine aerosol, indicated by an increase of the particle depolarisation ratio to about 10% at 355 nm (9% at 532 nm) and thus confirming the non-sphericity of these particles, could be detected on top of the MBL. On the same cruise, an almost pure Saharan dust plume was observed near the Canary Islands, presented in the second case. The third case deals with several layers of Saharan dust partly mixed with biomass-burning smoke measured on PS98 near the Cabo Verde islands. While the MBL was partly mixed with dust in the pure Saharan dust case, an almost marine MBL was observed in the third case. A statistical analysis showed latitudinal differences in the optical properties within the MBL, caused by the downmixing of dust in the tropics and anthropogenic influences in the northern latitudes, whereas the optical properties of the MBL in the Southern Hemisphere correlate with typical marine values. The particle depolarisation ratio of dried marine layers ranged between 4 and 9% at 532 nm. Night measurements from PS95 and PS98 were used to illustrate the potential of aerosol classification using lidar ratio, particle depolarisation ratio at 355 and 532 nm, and Angström exponent. Lidar ratio and particle depolarisation ratio have been found to be the main indicator for particle type, whereas the Ångström exponent is rather variable.
  • Item
    The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions
    (Göttingen : Copernicus GmbH, 2019) Banks, J.R.; Hünerbein, A.; Heinold, B.; Brindley, H.E.; Deneke, H.; Schepanski, K.
    Infrared "Desert Dust" composite imagery taken by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), onboard the Meteosat Second Generation (MSG) series of satellites above the equatorial East Atlantic, has been widely used for more than a decade to identify and track the presence of dust storms from and over the Sahara Desert, the Middle East, and southern Africa. Dust is characterised by distinctive pink colours in the Desert Dust false-colour imagery; however, the precise colour is influenced by numerous environmental properties, such as the surface thermal emissivity and skin temperature, the atmospheric water vapour content, the quantity and height of dust in the atmosphere, and the infrared optical properties of the dust itself. For this paper, simulations of SEVIRI infrared measurements and imagery have been performed using a modelling system, which combines dust concentrations simulated by the aerosol transport model COSMO-MUSCAT (COSMO: COnsortium for Small-scale MOdelling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model) with radiative transfer simulations from the RTTOV (Radiative Transfer for TOVS) model. Investigating the sensitivity of the synthetic infrared imagery to the environmental properties over a 6-month summertime period from 2011 to 2013, it is confirmed that water vapour is a major control on the apparent colour of dust, obscuring its presence when the moisture content is high. Of the three SEVIRI channels used in the imagery (8.7, 10.8, and 12.0 μm), the channel at 10.8 μm has the highest atmospheric transmittance and is therefore the most sensitive to the surface skin temperature. A direct consequence of this sensitivity is that the background desert surface exhibits a strong diurnal cycle in colour, with light blue colours possible during the day and purple hues prevalent at night. In dusty scenes, the clearest pink colours arise from high-altitude dust in dry atmospheres. Elevated dust influences the dust colour primarily by reducing the contrast in atmospheric transmittance above the dust layer between the SEVIRI channels at 10.8 and 12.0 μm, thereby boosting red and pink colours in the imagery. Hence, the higher the dust altitude, the higher the threshold column moisture needed for dust to be obscured in the imagery: for a sample of dust simulated to have an aerosol optical depth (AOD) at 550 nm of 2-3 at an altitude of 3-4 km, the characteristic colour of the dust may only be impaired when the total column water vapour is particularly moist ('39 mm). Meanwhile, dust close to the surface (altitude < 1 km) is only likely to be apparent when the atmosphere is particularly dry and when the surface is particularly hot, requiring column moisture/13 mm and skin temperatures '314 K, and is highly unlikely to be apparent when the skin temperature is/300 K. Such low-altitude dust will regularly be almost invisible within the imagery, since it will usually be beneath much of the atmospheric water vapour column. It is clear that the interpretation of satellite-derived dust imagery is greatly aided by knowledge of the background environment.
  • Item
    Modelling the wintertime response to upper tropospheric and lower stratospheric ozone anomalies over the North Atlantic and Europe
    (Göttingen : Copernicus GmbH, 2003) Kirchner, I.; Peters, D.
    During boreal winter months, mean longitude-dependent ozone changes in the upper troposphere and lower stratosphere are mainly used by different ozone transport by planetary waves. The response to radiative perturbation induced by these ozone changes near the tropopause on the circulation is unclear. This response is investigated with the ECHAM4 general circulation model in a sensitivity study. In the simulation two different mean January realizations of the ozone field are implemented in ECHAM4. Both ozone fields are estimated on the basis of the observed mean January planetary wave structure of the 1980s. The first field represents a 14-year average (reference, 1979-1992) and the second one represents the mean ozone field change (anomaly, 1988-92) in boreal extra-tropics during the end of the 1980s. The model runs were carried out pairwise, with identical initial conditions for both ozone fields. Five statistically independent experiments were performed, forced with the observed sea surface temperatures for the period 1988 to 1992. The results support the hypothesis that the zonally asymmetric ozone changes of the 80s triggered a systematic alteration of the circulation over the North Atlantic - European region. It is suggested that this feedback process is important for the understanding of the decadal coupling between troposphere and stratosphere, as well as between subtropics and extra-tropics in winter.
  • Item
    Aerosol measurements with a shipborne Sun-sky-lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
    (Göttingen : Copernicus GmbH, 2019) Yin, Z.; Ansmann, A.; Baars, H.; Seifert, P.; Engelmann, R.; Radenz, M.; Jimenez, C.; Herzog, A.; Ohneiser, K.; Hanbuch, K.; Blarel, L.; Goloub, P.; Victori, S.; Maupin, F.
    A shipborne Sun-sky-lunar photometer of type CE318-T was tested during two trans-Atlantic cruises aboard the German research vessel Polarstern from 54ĝ N to 54ĝ S in May/June and December 2018. The continuous observations of the motion-stabilized shipborne CE318-T enabled the first-time observation of a full diurnal cycle of aerosol optical depth (AOD) and column-mean Ångström coefficient of a mixed dust-smoke episode. The latitudinal distribution of the AOD from the shipborne CE318-T, Raman lidar and MICROTOPS II shows the same trend with highest values in the dust belt from 0 to 20ĝ N and overall low values in the Southern Hemisphere. The linear-regression coefficients of determination between MICROTOPS II and the CE318-T were 0.988, 0.987, 0.994 and 0.994 for AODs at 380, 440, 500 and 870 nm and 0.896 for the Ångström exponent at 440-870 nm. The root-mean-squared differences of AOD at 380, 440, 500 and 870 nm were 0.015, 0.013, 0.010 and 0.009, respectively.
  • Item
    A simple conceptual model of abrupt glacial climate events
    (Göttingen : Copernicus GmbH, 2007) Braun, H.; Ganopolski, A.; Christl, M.; Chialvo, D.R.
    Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events) to a few simple principles, namely (i) the existence of two different climate states, (ii) a threshold process and (iii) an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2), in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance) and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations). We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.
  • Item
    Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability
    (Göttingen : Copernicus GmbH, 2012) Donner, R.V.; Ehrcke, R.; Barbosa, S.M.; Wagner, J.; Donges, J.F.; Kurths, J.
    The study of long-term trends in tide gauge data is important for understanding the present and future risk of changes in sea-level variability for coastal zones, particularly with respect to the ongoing debate on climate change impacts. Traditionally, most corresponding analyses have exclusively focused on trends in mean sea-level. However, such studies are not able to provide sufficient information about changes in the full probability distribution (especially in the more extreme quantiles). As an alternative, in this paper we apply quantile regression (QR) for studying changes in arbitrary quantiles of sea-level variability. For this purpose, we chose two different QR approaches and discuss the advantages and disadvantages of different settings. In particular, traditional linear QR poses very restrictive assumptions that are often not met in reality. For monthly data from 47 tide gauges from along the Baltic Sea coast, the spatial patterns of quantile trends obtained in linear and nonparametric (spline-based) frameworks display marked differences, which need to be understood in order to fully assess the impact of future changes in sea-level variability on coastal areas. In general, QR demonstrates that the general variability of Baltic sea-level has increased over the last decades. Linear quantile trends estimated for sliding windows in time reveal a wide-spread acceleration of trends in the median, but only localised changes in the rates of changes in the lower and upper quantiles.