Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

The influence of Mg doping on the nucleation of self-induced GaN nanowires

2012, Limbach, F., Caterino, R., Gotschke, T., Stoica, T., Calarco, R., Geelhaar, L., Riechert, H.

GaN nanowires were grown without any catalyst by plasma-assisted molecular beam epitaxy. Under supply of Mg, nanowire nucleation is faster, the areal density of wires increases to a higher value, and nanowire coalescence is more pronounced than without Mg. During nanowire nucleation the Ga desorption was monitored insitu by line-of-sight quadrupolemass spectrometry for various substrate temperatures. Nucleation energies of 4.0±0.3 eV and 3.2±0.3 eV without and with Mg supply were deduced, respectively. This effect has to be taken into account for the fabrication of nanowire devices and could be employed to tune the NW areal density.

Loading...
Thumbnail Image
Item

On the electronic properties of a single dislocation

2014, Reiche, M., Kittler, M., Erfurth, W., Pippel, E., Sklarek, K., Blumtritt, H., Haehnel, A., Uebensee, H.

A detailed knowledge of the electronic properties of individual dislocations is necessary for next generation nanodevices. Dislocations are fundamental crystal defects controlling the growth of different nanostructures (nanowires) or appear during device processing. We present a method to record electric properties of single dislocations in thin silicon layers. Results of measurements on single screw dislocations are shown for the first time. Assuming a cross-section area of the dislocation core of about 1 nm2, the current density through a single dislocation is J = 3.8 × 1012 A/cm2 corresponding to a resistivity of ρ ≅ 1 × 10-8 Ω cm. This is about eight orders of magnitude lower than the surrounding silicon matrix. The reason of the supermetallic behavior is the high strain in the cores of the dissociated dislocations modifying the local band structure resulting in high conductive carrier channels along defect cores.

Loading...
Thumbnail Image
Item

Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays

2018, Fernández, J.G., Martínez, V.V., Thomas, A., de la Prida Pidal, V.M., Nielsch, K.

First Order Reversal Curve (FORC) analysis has been established as an appropriate method to investigate the magnetic interactions among complex ferromagnetic nanostructures. In this work, the magnetization reversal mechanism of bi-segmented nanowires composed by long Co and Ni segments contacted at one side was investigated, as a model system to identify and understand the FORC fingerprint of a two-step magnetization reversal process. The resulting hysteresis loop of the bi-segmented nanowire array exhibits a completely different magnetic behavior than the one expected for the magnetization reversal process corresponding to each respective Co and Ni nanowire arrays, individually. Based on the FORC analysis, two possible magnetization reversal processes can be distinguished as a consequence of the ferromagnetic coupling at the interface between the Ni and Co segments. Depending on the relative difference between the magnetization switching fields of each segment, the softer magnetic phase induces the switching of the harder one through the injection and propagation of a magnetic domain wall when both switching fields are comparable. On the other hand, if the switching fields values differ enough, the antiparallel magnetic configuration of nanowires is also possible but energetically unfavorable, thus resulting in an unstable magnetic configuration. Making use of the different temperature dependence of the magnetic properties for each nanowire segment with different composition, one of the two types of magnetization reversal is favored, as demonstrated by FORC analyses.

Loading...
Thumbnail Image
Item

Edge states and topological insulating phases generated by curving a nanowire with Rashba spin-orbit coupling

2015, Gentile, Paola, Cuoco, Mario, Ortix, Carmine

We prove that curvature effects in low-dimensional nanomaterials can promote the generation of topological states of matter by considering the paradigmatic example of quantum wires with Rashba spin-orbit coupling, which are bent in a nanoscale periodic serpentine structure. The effect of the periodic curvature generally results in the appearance of insulating phases with a corresponding novel butterfly spectrum characterized by the formation of finite measure complex regions of forbidden energies. When the Fermi energy lies in the gaps, the system displays localized end states protected by topology. We further show that for certain superstructure periods the system possesses topologically nontrivial insulating phases at half filling. Our results suggest that the local curvature and the topology of the electronic states are inextricably intertwined in geometrically deformed nanomaterials.

Loading...
Thumbnail Image
Item

Diffraction at GaAs/Fe3Si core/shell nanowires: The formation of nanofacets

2016, Jenichen, B., Hanke, M., Hilse, M., Herfort, J., Trampert, A., Erwin, S.C.

GaAs/Fe3Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe3Si shells exhibit nanofacets. These facets consist of well pronounced Fe3Si{111} planes. Density functional theory reveals that the Si-terminated Fe3Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe3Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30° compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [1 1 ̄ 0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe3Si shells and GaAs cores occurring at increased growth temperatures.

Loading...
Thumbnail Image
Item

Polarized recombination of acoustically transported carriers in GaAs nanowires

2012, Möller, Michael, Hernández-Mínguez, Alberto, Breuer, Steffen, Pfüller, Carsten, Brandt, Oliver, de Lima Jr, Mauricio M., Cantarero, Andrés, Geelhaar, Lutz, Riechert, Henning, Santos, Paulo V.

The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

Loading...
Thumbnail Image
Item

Nanoscale spectroscopic imaging of GaAs-AlGaAs quantum well tube nanowires: Correlating luminescence with nanowire size and inner multishell structure

2019, Prete, P., Wolf, D., Marzo, F., Lovergine, N.

The luminescence and inner structure of GaAs-AlGaAs quantum well tube (QWT) nanowires were studied using lowerature cathodoluminescence (CL) spectroscopic imaging, in combination with scanning transmission electron microscopy (STEM) tomography, allowing for the first time a robust correlation between the luminescence properties of these nanowires and their size and inner 3D structure down to the nanoscale. Besides the core luminescence and minor defects-related contributions, each nanowire showed one or more QWT peaks associated with nanowire regions of different diameters. The values of the GaAs shell thickness corresponding to each QWT peak were then determined from the nanowire diameters by employing a multishell growth model upon validation against experimental data (core diameter and GaAs and AlGaAs shell thickness) obtained from the analysis of the 3D reconstructed STEM tomogram of a GaAs-AlGaAs QWT nanowire. We found that QWT peak energies as a function of thus-estimated (3-7 nm) GaAs shell thickness are 40-120 meV below the theoretical values of exciton recombination for uniform QWTs symmetrically wrapped around a central core. However, the analysis of the 3D tomogram further evidenced azimuthal asymmetries as well as (azimuthal and axial) random fluctuations of the GaAs shell thickness, suggesting that the red-shift of QWT emissions is prominently due to carrier localization. The CL mapping of QWT emission intensities along the nanowire axis allowed to directly image the nanoscale localization of the emission, supporting the above picture. Our findings contribute to a deeper understanding of the luminescence-structure relationship in QWT nanowires and will foster their applications as efficient nanolaser sources for future monolithic integration onto silicon.

Loading...
Thumbnail Image
Item

Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states

2014, Schell, A.W., Engel, P., Werra, J.F.M., Wolff, C., Busch, K., Benson, O.

Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.

Loading...
Thumbnail Image
Item

Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy

2012, Davydok, Anton, Breuer, Steffen, Biermanns, Andreas, Geelhaar, Lutz, Pietsch, Ullrich

Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.

Loading...
Thumbnail Image
Item

Holographic vector field electron tomography of three-dimensional nanomagnets

2019, Wolf, D., Biziere, N., Sturm, S., Reyes, D., Wade, T., Niermann, T., Krehl, J., Warot-Fonrose, B., Büchner, B., Snoeck, E., Gatel, C., Lubk, A.

Complex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.