Search Results

Now showing 1 - 10 of 986
Loading...
Thumbnail Image
Item

Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging

2020, García-Álvarez, Rafaela, Chen, Lisa, Nedilko, Alexander, Sánchez-Iglesias, Ana, Rix, Anne, Lederle, Wiltrud, Pathak, Vertika, Lammers, Twan, von Plessen, Gero, Kostarelos, Kostas, Liz-Marzán, Luis M., Kuehne, Alexander J.C., Chigrin, Dmitry N.

Photoacoustics is an upcoming modality for biomedical imaging, which promises minimal invasiveness at high penetration depths of several centimeters. For superior photoacoustic contrast, imaging probes with high photothermal conversion efficiency are required. Gold nanoparticles are among the best performing photoacoustic imaging probes. However, the geometry and size of the nanoparticles determine their photothermal efficiency. We present a systematic theoretical analysis to determine the optimum nanoparticle geometry with respect to photoacoustic efficiency in the near-infrared spectral range, for superior photoacoustic contrast. Theoretical predictions are illustrated by experimental results for two of the most promising nanoparticle geometries, namely, high aspect ratio gold nanorods and gold nanostars. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Present and future of surface-enhanced Raman scattering

2020, Langer, Judith, de Aberasturi, Dorleta Jimenez, Aizpurua, Javier, Alvarez-Puebla, Ramon A., Auguié, Baptiste, Baumberg, Jeremy J., Bazan, Guillermo C., Bell, Steven E.J., Boisen, Anja, Brolo, Alexandre G., Choo, Jaebum, Cialla-May, Dana, Deckert, Volker, Fabris, Laura, Faulds, Karen, de Abajo, F. Javier García, Goodacre, Royston, Graham, Duncan, Haes, Amanda J., Haynes, Christy L., Huck, Christian, Itoh, Tamitake, Käll, Mikael, Kneipp, Janina, Kotov, Nicholas A., Kuang, Hua, Le Ru, Eric C., Lee, Hiang Kwee, Li, Jian-Feng, Ling, Xing Yi, Maier, Stefan A., Mayerhöfer, Thomas, Moskovits, Martin, Murakoshi, Kei, Nam, Jwa-Min, Nie, Shuming, Ozaki, Yukihiro, Pastoriza-Santos, Isabel, Perez-Juste, Jorge, Popp, Juergen, Pucci, Annemarie, Reich, Stephanie, Ren, Bin, Schatz, George C., Shegai, Timur, Schlücker, Sebastian, Tay, Li-Lin, Thomas, K. George, Tian, Zhong-Qun, Van Duyne, Richard P., Vo-Dinh, Tuan, Wang, Yue, Willets, Katherine A., Xu, Chuanlai, Xu, Hongxing, Xu, Yikai, Yamamoto, Yuko S., Zhao, Bing, Liz-Marzán, Luis M.

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

Loading...
Thumbnail Image
Item

Electron Transport across Vertical Silicon/MoS2/Graphene Heterostructures: Towards Efficient Emitter Diodes for Graphene Base Hot Electron Transistors

2020, Belete, Melkamu, Engström, Olof, Vaziri, Sam, Lippert, Gunther, Lukosius, Mindaugas, Kataria, Satender, Lemme, Max C.

Heterostructures comprising silicon, molybdenum disulfide (MoS2), and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature-dependent asymmetric current, indicating thermally activated charge carrier transport. The data are compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS2 is linearly temperature-dependent for T = 200-300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS2, strain at the Si/MoS2 interface, or different electron effective masses in Si and MoS2, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS2. The low barrier formed between Si and MoS2 and the resultant thermionic emission demonstrated here make the present devices potential candidates as the emitter diode of graphene base hot electron transistors for future high-speed electronics. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Discrimination between pathogenic and non-pathogenic E. coli strains by means of Raman microspectroscopy

2020, Lorenz B., Ali N., Bocklitz T., Rösch P., Popp J.

Bacteria can be harmless commensals, beneficial probiotics, or harmful pathogens. Therefore, mankind is challenged to detect and identify bacteria in order to prevent or treat bacterial infections. Examples are identification of species for treatment of infection in clinics and E. coli cell counting for water quality monitoring. Finally, in some instances, the pathogenicity of a species is of interest. The main strategies to investigate pathogenicity are detection of target genes which encode virulence factors. Another strategy could be based on phenotypic identification. Raman spectroscopy is a promising phenotypic method, which offers high sensitivities and specificities for the identification of bacteria species. In this study, we evaluated whether Raman microspectroscopy could be used to determine the pathogenicity of E. coli strains. We used Raman spectra of seven non-pathogenic and seven pathogenic E. coli strains to train a PCA-SVM model. Then, the obtained model was tested by identifying the pathogenicity of three additional E. coli strains. The pathogenicity of these three strains could be correctly identified with a mean sensitivity of 77%, which is suitable for a fast screening of pathogenicity of single bacterial cells. [Figure not available: see fulltext.]. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDFTFE), UHMWPE, and rGO

2020, Shiyanova, Kseniya A., Gudkov, Maksim V., Gorenberg, Arkady Ya, Rabchinskii, Maxim K., Smirnov, Dmitry A., Shapetina, Maria A., Gurinovich, Tatiana D., Goncharuk, Galina P., Kirilenko, Demid A., Bazhenov, Sergey L., Melnikov, Valery P.

The formation of a segregated network structure (wittingly uneven distribution of a filler) is one of the most promising strategies for the fabrication of electrically conductive polymer composites at present. However, the simultaneous achievement of high values of electrical conductivity with the retention of well mechanical properties within this approach remains a great challenge. Here, by means of X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra, scanning electron microscopy (SEM), dielectric spectroscopy, and compression engineering stress-strain curve analysis, we have studied the effect of a segregated network structure on the electrical conductivity and mechanical properties of a set of polymer composites. The composites were prepared by applying graphene oxide (GO) with ultralarge basal plane size (up to 150 μm) onto the surface of polymer powder particles, namely, poly(vinyl chloride) (PVC), poly(vinylidene fluoride-co-tetrafluoroethylene) (P(VDF-TFE)), and ultrahigh-molecular-weight poly(ethylene) (UHMWPE) with the subsequent GO reduction and composite hot pressing. A strong dependence of the segregated network polymer composites' physical properties on the polymer matrix was demonstrated. Particularly, 12 orders of magnitude rise of the polymers' electrical conductivity up to 0.7 S/m was found upon the incorporation of the reduced GO (rGO). A 17% increase in the P(VDF-TFE) elastic modulus filled by 1 wt % of rGO was observed. Fracture strength of PVC/rGO at 0.5 wt % content of the filler was demonstrated to decrease by fourfold. At the same time, the change in strength was not significant for P(VDF-TFE) and UHMWPE composites in comparison with pure polymers. Our results show a promise to accelerate the development of new composites for energy applications, such as metal-free supercapacitor plates and current collectors of lithium-ion batteries, bipolar plates of proton-exchange membrane fuel cells, antistatic elements of various electronic devices, etc. © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Mechanistic Understanding of the Heterogeneous, Rhodium-Cyclic (Alkyl)(Amino)Carbene-Catalyzed (Fluoro-)Arene Hydrogenation

2020, Moock D., Wiesenfeldt M.P., Freitag M., Muratsugu S., Ikemoto S., Knitsch R., Schneidewind J., Baumann W., Schäfer A.H., Timmer A., Tada M., Hansen M.R., Glorius F.

Recently, chemoselective methods for the hydrogenation of fluorinated, silylated, and borylated arenes have been developed providing direct access to previously unattainable, valuable products. Herein, a comprehensive study on the employed rhodium-cyclic (alkyl)(amino)carbene (CAAC) catalyst precursor is disclosed. Mechanistic experiments, kinetic studies, and surface-spectroscopic methods revealed supported rhodium(0) nanoparticles (NP) as the active catalytic species. Further studies suggest that CAAC-derived modifiers play a key role in determining the chemoselectivity of the hydrogenation of fluorinated arenes, thus offering an avenue for further tuning of the catalytic properties. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Hierarchical fibrous guiding cues at different scales influence linear neurite extension

2020, Omidinia-Anarkoli, Abdolrahman, Ephraim, John Wesley, Rimal, Rahul, De Laporte, Laura

Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 μm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite “decision-making” behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. Statement of Significance: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior. © 2020

Loading...
Thumbnail Image
Item

Biochemical Characterization of Mouse Retina of an Alzheimer's Disease Model by Raman Spectroscopy

2020, Stiebing, Clara, Jahn, Izabella J., Schmitt, Michael, Keijzer, Nanda, Kleemann, Robert, Kiliaan, Amanda J., Drexler, Wolfgang, Leitgeb, Rainer A., Popp, Jürgen

The presence of biomarkers characteristic for Alzheimer's disease in the retina is a controversial topic. Raman spectroscopy offers information on the biochemical composition of tissues. Thus, it could give valuable insight into the diagnostic value of retinal analysis. Within the present study, retinas of a double transgenic mouse model, that expresses a chimeric mouse/human amyloid precursor protein and a mutant form of human presenilin 1, and corresponding control group were subjected to ex vivo Raman imaging. The Raman data recorded on cross sections of whole eyes highlight the layered structure of the retina in a label-free manner. Based on the Raman information obtained from en face mounted retina samples, a discrimination between healthy and Alzheimer's disease retinal tissue can be done with an accuracy of 85.9%. For this a partial least squares-linear discriminant analysis was applied. Therefore, although no macromolecular changes in form of, i.e., amyloid beta plaques, can be noticed based on Raman spectroscopy, subtle biochemical changes happening in the retina could lead to Alzheimer's disease identification. ©

Loading...
Thumbnail Image
Item

Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading

2020, Schroepfer, Michaela, Junghans, Frauke, Voigt, Diana, Meyer, Michael, Breier, Anette, Schulze-Tanzil, Gundula, Prade, Ina

For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein-but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility. Copyright © 2020 American Chemical Society.

Loading...
Thumbnail Image
Item

Rapid detection of the aspergillosis biomarker triacetylfusarinine C using interference-enhanced Raman spectroscopy

2020, Pahlow S., Orasch T., Žukovskaja O., Bocklitz T., Haas H., Weber K.

Triacetylfusarinine C (TAFC) is a siderophore produced by certain fungal species and might serve as a highly useful biomarker for the fast diagnosis of invasive aspergillosis. Due to its renal elimination, the biomarker is found in urine samples of patients suffering from Aspergillus infections. Accordingly, non-invasive diagnosis from this easily obtainable body fluid is possible. Within our contribution, we demonstrate how Raman microspectroscopy enables a sensitive and specific detection of TAFC. We characterized the TAFC iron complex and its iron-free form using conventional and interference-enhanced Raman spectroscopy (IERS) and compared the spectra with the related compound ferrioxamine B, which is produced by bacterial species. Even though IERS only offers a moderate enhancement of the Raman signal, the employment of respective substrates allowed lowering the detection limit to reach the clinically relevant range. The achieved limit of detection using IERS was 0.5 ng of TAFC, which is already well within the clinically relevant range. By using an extraction protocol, we were able to detect 1.4 μg/mL TAFC via IERS from urine within less than 3 h including sample preparation and data analysis. We could further show that TAFC and ferrioxamine B can be clearly distinguished by means of their Raman spectra even in very low concentrations. © 2020, The Author(s).