Search Results

Now showing 1 - 4 of 4
  • Item
    Cobalt pincer complexes for catalytic reduction of nitriles to primary amines
    (London : RSC Publ., 2019) Schneekönig, Jacob; Tannert, Bianca; Hornke, Helen; Beller, Matthias; Junge, Kathrin
    Various cobalt pincer type complexes 1-6 were applied for the catalytic hydrogenation of nitriles to amines. Among these, catalyst 4 is the most efficient, allowing the reduction of aromatic as well as aliphatic nitriles in moderate to excellent yields. © 2019 The Royal Society of Chemistry.
  • Item
    Facile synthesis of supported Ru-Triphos catalysts for continuous flow application in selective nitrile reduction
    (Cambridge : RSC, 2019) Konrath, Robert; Heutz, Frank J.L.; Steinfeldt, Norbert; Rockstroh, Nils; Kamer, Paul C.J.
    The selective catalytic hydrogenation of nitriles represents an important but challenging transformation for many homogeneous and heterogeneous catalysts. Herein, we report the efficient and modular solid-phase synthesis of immobilized Triphos-type ligands in very high yields, involving only minimal work-up procedures. The corresponding supported ruthenium-Triphos catalysts are tested in the hydrogenation of various nitriles. Under mild conditions and without the requirement of additives, the tunable supported catalyst library provides selective access to both primary amines and secondary imines. Moreover, the first application of a Triphos-type catalyst in a continuous flow process is presented demonstrating high catalyst life-time over at least 195 hours without significant activity loss. © 2019 The Royal Society of Chemistry.
  • Item
    Hydration of nitriles using a metal-ligand cooperative ruthenium pincer catalyst
    (Cambridge : RSC, 2019) Guo, Beibei; de Vries, Johannes G.; Otten, Edwin
    Nitrile hydration provides access to amides that are important structural elements in organic chemistry. Here we report catalytic nitrile hydration using ruthenium catalysts based on a pincer scaffold with a dearomatized pyridine backbone. These complexes catalyze the nucleophilic addition of H2O to a wide variety of aliphatic and (hetero)aromatic nitriles in tBuOH as solvent. Reactions occur under mild conditions (room temperature) in the absence of additives. A mechanism for nitrile hydration is proposed that is initiated by metal-ligand cooperative binding of the nitrile. This journal is © The Royal Society of Chemistry.
  • Item
    Hexacyanidosilicates with Functionalized Imidazolium Counterions
    (Weinheim : Wiley-VCH, 2020) Harloff, Jörg; Laatz, Karoline Charlotte; Lerch, Swantje; Schulz, Axel; Stoer, Philip; Strassner, Thomas; Villinger, Alexander
    Functionalized imidazolium cations were combined with the hexacyanidosilicate anion, [Si(CN)6]2–, by salt metathesis reactions with K2[Si(CN)6], yielding novel ionic compounds of the general formula [R–Ph(nBu)Im]2[Si(CN)6] {R = 2-Me (1), 4-Me (2), 2,4,6-Me = Mes (3), 2-MeO (4), 2,4-F (5), 4-Br (6); Im = imidazolium}. All synthesized imidazolium hexacyanidosilicates decompose upon thermal treatment above 95 °C (96 – 164 °C). Furthermore, the hexa-borane-adduct [Mes(nBu)Im]2{Si[(CN)B(C6F5)3]6}·6CH2Cl2 (7), which is thermally stable up to 215 °C, was obtained from the reaction of 3 with Lewis acidic B(C6F5)3. In CH3CN solution, decomposition of the hexaadduct to the Lewis-acid-base adduct CH3CN–B(C6F5)3 and [(C6F5)3B·(µ-CN)·B(C6F5)3]– was observed. All synthesized compounds were isolated in good yields and were completely characterized including single crystal structure elucidations. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.