Search Results

Now showing 1 - 6 of 6
  • Item
    Growth and Properties of Intentionally Carbon-Doped GaN Layers
    (Weinheim : Wiley-VCH, 2019) Richter, Eberhard; Beyer, Franziska C.; Zimmermann, Friederike; Gärtner, Günter; Irmscher, Klaus; Gamov, Ivan; Heitmann, Johannes; Weyers, Markus; Tränkle, Günther
    Carbon-doping of GaN layers with thickness in the mm-range is performed by hydride vapor phase epitaxy. Characterization by optical and electrical measurements reveals semi-insulating behavior with a maximum of specific resistivity of 2 × 1010 Ω cm at room temperature found for a carbon concentration of 8.8 × 1018 cm−3. For higher carbon levels up to 3.5 × 1019 cm−3, a slight increase of the conductivity is observed and related to self-compensation and passivation of the acceptor. The acceptor can be identified as CN with an electrical activation energy of 0.94 eV and partial passivation by interstitial hydrogen. In addition, two differently oriented tri-carbon defects, CN-a-CGa-a-CN and CN-a-CGa-c-CN, are identified which probably compensate about two-thirds of the carbon which is incorporated in excess of 2 × 1018 cm−3. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Influence of Growth Polarity Switching on the Optical and Electrical Properties of GaN/AlGaN Nanowire LEDs
    (Basel : MDPI, 2021) Reszka, Anna; Korona, Krzysztof P.; Tiagulskyi, Stanislav; Turski, Henryk; Jahn, Uwe; Kret, Slawomir; Bożek, Rafał; Sobanska, Marta; Zytkiewicz, Zbigniew R.; Kowalski, Bogdan J.
    For the development and application of GaN-based nanowire structures, it is crucial to understand their fundamental properties. In this work, we provide the nano-scale correlation of the morphological, electrical, and optical properties of GaN/AlGaN nanowire light emitting diodes (LEDs), observed using a combination of spatially and spectrally resolved cathodoluminescence spectroscopy and imaging, electron beam-induced current microscopy, the nano-probe technique, and scanning electron microscopy. To complement the results, the photo- and electro-luminescence were also studied. The interpretation of the experimental data was supported by the results of numerical simulations of the electronic band structure. We characterized two types of nanowire LEDs grown in one process, which exhibit top facets of different shapes and, as we proved, have opposite growth polarities. We show that switching the polarity of nanowires (NWs) from the N- to Ga-face has a significant impact on their optical and electrical properties. In particular, cathodoluminescence studies revealed quantum wells emissions at about 3.5 eV, which were much brighter in Ga-polar NWs than in N-polar NWs. Moreover, the electron beam-induced current mapping proved that the p–n junctions were not active in N-polar NWs. Our results clearly indicate that intentional polarity inversion between the n- and p-type parts of NWs is a potential path towards the development of efficient nanoLED NW structures.
  • Item
    Current Status of Carbon‐Related Defect Luminescence in GaN
    (Weinheim : Wiley-VCH, 2021) Zimmermann, Friederike; Beyer, Jan; Röder, Christian; Beyer, Franziska C.; Richter, Eberhard; Irmscher, Klaus; Heitmann, Johannes
    Highly insulating layers are a prerequisite for gallium nitride (GaN)-based power electronic devices. For this purpose, carbon doping is one of the currently pursued approaches. However, its impact on the optical and electrical properties of GaN has been widely debated in the scientific community. For further improvement of device performance, a better understanding of the role of related defects is essential. To study optically active point defects, photoluminescence is one of the most frequently used experimental characterization techniques. Herein, the main recent advances in the attribution of carbon-related photoluminescence bands are reviewed, which were enabled by the interplay of a refinement of growth and characterization techniques and state-of-the-art first-principles calculations developed during the last decade. The predicted electronic structures of isolated carbon defects and selected carbon-impurity complexes are compared to experimental results. Taking into account both of these, a comprehensive overview on the present state of interpretation of carbon-related broad luminescence bands in bulk GaN is presented.
  • Item
    Dislocation and indium droplet related emission inhomogeneities in InGaN LEDs
    (Bristol : IOP Publ., 2021) van Deurzen, Len; Gómez Ruiz, Mikel; Lee, Kevin; Turski, Henryk; Bharadwaj, Shyam; Page, Ryan; Protasenko, Vladimir; Xing, Huili (Grace); Lähnemann, Jonas; Jena, Debdeep
    This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination.
  • Item
    Effect of Ge-doping on the short-wave, mid- and far-infrared intersubband transitions in GaN/AlGaN heterostructures
    (Bristol : IOP, 2017) Lim, Carolin B.; Ajay, Akhil; Lähnemann, Jonas; Bougerol, Catherine; Monroy, Eva
    This paper assesses the effects of Ge-doping on the structural and optical (band-to-band and intersubband (ISB)) properties of GaN/AlGaN multi-quantum wells (QWs) designed to display ISB absorption in the short-wave, mid- and far-infrared ranges (SWIR, MIR, and FIR, respectively). The standard c-plane crystallographic orientation is considered for wells absorbing in the SWIR and MIR spectral regions, whereas the FIR structures are grown along the nonpolar m-axis. In all cases, we compare the characteristics of Ge-doped and Si-doped samples with the same design and various doping levels. The use of Ge appears to improve the mosaicity of the highly lattice-mismatched GaN/AlN heterostructures. However, when reducing the lattice mismatch, the mosaicity is rather determined by the substrate and does not show any dependence on the dopant nature or concentration. From the optical point of view, by increasing the dopant density, we observe a blueshift of the photoluminescence in polar samples due to the screening of the internal electric field by free carriers. In the ISB absorption, on the other hand, there is a systematic improvement of the linewidth when using Ge as a dopant for high doping levels, whatever the spectral region under consideration (i.e. different QW size, barrier composition and crystallographic orientation).
  • Item
    Protection Mechanism against Photocorrosion of GaN Photoanodes Provided by NiO Thin Layers
    (Weinheim : Wiley-VCH, 2020) Kamimura, Jumpei; Budde, Melanie; Bogdanoff, Peter; Tschammer, Carsten; Abdi, Fatwa F.; van de Krol, Roel; Bierwagen, Oliver; Riechert, Henning; Geelhaar, Lutz
    The photoelectrochemical properties of n-type Ga-polar GaN photoelectrodes covered with NiO layers of different thicknesses in the range 0–20 nm are investigated for aqueous solution. To obtain layers of well-defined thickness and high crystal quality, NiO is grown by plasma-assisted molecular-beam epitaxy. Stability tests reveal that the NiO layers suppress photocorrosion. With increasing NiO thickness, the onset of the photocurrent is shifted to more positive voltages and the photocurrent is reduced, especially for low bias potentials, indicating that hole transfer to the electrolyte interface is hindered by thicker NiO layers. Furthermore, cathodic transient spikes are observed under intermittent illumination, which hints at surface recombination processes. These results are inconsistent with the common explanation of the protection mechanism that the band alignment of GaN/NiO enables efficient hole-injection, thus preventing hole accumulation at the GaN surface that would lead to anodic photocorrosion. Interestingly, the morphology of the etch pits as well as further experiments involving the photodeposition of Ag indicate that photocorrosion of GaN photoanodes is related to reductive processes at threading dislocations. Therefore, it is concluded that the NiO layers block the transfer of photogenerated electrons from GaN to the electrolyte interface, which prevents the cathodic photocorrosion. © 2020 The Authors. Solar RRL published by Wiley-VCH GmbH