Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Intracluster Coulombic decay following intense NIR ionization of clusters

2015, Schütte, Bernd, Arbeiter, Mathias, Fennel, Thomas, Jabbari, Ghazal, Gokhberg, Kirill, Kuleff, Alexander I., Vrakking, Marc J. J., Rouzée, Arnaud

We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay.

Loading...
Thumbnail Image
Item

Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets

2015, Hasović, Elvedin, Milošević, Dejan B., Gazibegović-Busuladži, Azra, Čerkić, Aner, Busuladžić, Mustafa

We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.

Loading...
Thumbnail Image
Item

Unified description of low-order above-threshold ionization on and off axis

2016, Becker, W., Milošević, D.B.

A recently developed unified description of low-order above-threshold ionization (Becker et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204022; 2015 J. Phys. B: At. Mol. Opt. Phys. 48 151001) is revisited and extended. By considering the rescattering electron energies and angles at the classical cutoffs and the contributions of particular quantum-orbit solutions, it is shown that summing both the backward- and the forward-scattering contributions, within the low-frequency approximation, it is possible to reproduce the observed features of the ATI spectra both for low and high energies and both on and off the laser-polarization axis in the momentum plane.

Loading...
Thumbnail Image
Item

Mapping the dissociative ionization dynamics of molecular nitrogen with attosecond resolution

2015, Klinker, M., Trabattoni, A., González-Vázquez, J., Liu, C., Sansone, G., Linguerri, R., Hochlaf, M.., Klei, J., Vrakking, M.J.J., Martin, F., Nisoli, M., Calegari, F.

We wish to understand the processes underlying the ionization dynamics of N2 as experimentally induced and studied by recording the kinetic energy release (KER) in a XUV-pump/IR-probe setup. To this end a theoretical model was developed describing the ionization process using Dyson Orbitals and, subsequently, the dissociation process using a large set of diabatic potential energy surfaces (PES) on which to propagate. From said set of PES, a small subset is extracted allowing for the identification of one and two photon processes chiefly responsible for the experimentally observed features.

Loading...
Thumbnail Image
Item

Correlated electronic decay following intense near-infrared ionization of clusters

2015, Schütte, Bernd, Arbeiter, Mathias, Fennel, Thomas, Jabbari, Ghazal, Kuleff, Alexander I., Vrakking, Marc J. J., Rouzée, Arnaud

We report on a novel correlated electronic decay process following extensive Rydberg atom formation in clusters ionized by intense near-infrared fields. A peak close to the atomic ionization potential is found in the electron kinetic energy spectrum. This new contribution is attributed to an energy transfer between two electrons, where one electron decays from a Rydberg state to the ground state and transfers its excess energy to a weakly bound cluster electron in the environment that can escape from the cluster. The process is a result of nanoplasma formation and is therefore expected to be important, whenever intense laser pulses interact with nanometer-sized particles.

Loading...
Thumbnail Image
Item

Strong field ionization of small hydrocarbon chains with full 3D momentum analysis

2015, Schulz, Claus Peter, Birkner, Sascha, Furch, Federico J., Anderson, Alexandria, Mikosch, Jochen, Schell, Felix, Vrakking, Marc J. J.

Strong field ionization of small hydrocarbon chains is studied in a kinematic complete experiment using a reaction microscope. By coincidence detection of ions and electrons different ionization continua populated during the ionization process are identified. In addition, photoelectron momentum distributions from laser-aligned molecules allow to characterize the electron wavepackets emerging from different Dyson orbitals.