Search Results

Now showing 1 - 10 of 80
  • Item
    Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva
    (Columbus, Ohio : American Chemical Society, 2017) Riedel, Tomáš; Hageneder, Simone; Surman, František; Pop-Georgievski, Ognen; Noehammer, Christa; Hofner, Manuela; Brynda, Eduard; Rodriguez-Emmenegger, Cesar; Dostálek, Jakub
    A biosensor for the detection of hepatitis B antibodies in clinical saliva was developed. Compared to conventional analysis of blood serum, it offers the advantage of noninvasive collection of samples. Detection of biomarkers in saliva imposes two major challenges associated with the low analyte concentration and increased surface fouling. The detection of minute amounts of hepatitis B antibodies was performed by plasmonically amplified fluorescence sandwich immunoassay. To have access to specific detection, we prevented the nonspecific adsorption of biomolecules present in saliva by brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] grafted from the gold sensor surface and post modified with hepatitis B surface antigen. Obtained results were validated against the response measured with ELISA at a certified laboratory using serum from the same patients. © 2017
  • Item
    Anti-Stokes Stress Sensing: Mechanochemical Activation of Triplet-Triplet Annihilation Photon Upconversion
    (Weinheim : Wiley-VCH, 2019) Yildiz, Deniz; Baumann, Christoph; Mikosch, Annabel; Kuehne, Alexander J.C.; Herrmann, Andreas; Göstl, Robert
    The development of methods to detect damage in macromolecular materials is of paramount importance to understand their mechanical failure and the structure–property relationships of polymers. Mechanofluorophores are useful and sensitive molecular motifs for this purpose. However, to date, tailoring of their optical properties remains challenging and correlating emission intensity to force induced material damage and the respective events on the molecular level is complicated by intrinsic limitations of fluorescence and its detection techniques. Now, this is tackled by developing the first stress-sensing motif that relies on photon upconversion. By combining the Diels–Alder adduct of a π-extended anthracene with the porphyrin-based triplet sensitizer PtOEP in polymers, triplet–triplet annihilation photon upconversion of green to blue light is mechanochemically activated in solution as well as in the solid state. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Quantifying ligand-cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge
    (Melville, NY : AIP Publishing, 2015) Beer, Meike V.; Hahn, Kathrin; Diederichs, Sylvia; Fabry, Marlies; Singh, Smriti; Spencer, Steve J.; Salber, Jochen; Möller, Martin; Shard, Alexander G.; Groll, Jürgen
    Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.
  • Item
    Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings
    (Columbus, Ohio : American Chemical Society, 2017) Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J.; Rodriguez-Emmenegger, Cesar
    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
  • Item
    Preliminary Study on the Application of Temperature Swing Adsorption in Aqueous Phase for Pesticide Removal
    (London [u.a.] : Institute of Physics, 2018) Aumeier, B.; Dang, H.Q.A.; Wessling, M.
    Temperature swing adsorption (TSA) is a well-established process for gas purification. In this work, the feasibility of TSA in aqueous phase was studied. This concept could enable in situ adsorbent regeneration and thus fostering sustainable decentralized adsorption processes applied to water treatment. The adsorption processes with the use of granular activated carbon (GAC) have been widely applied to remove the residual amounts of pesticides in water treatment. Amitrole was chosen as a typical pesticide in this study, GAC was selected as the main adsorbent for amitrole removal. Adsorption isotherm experiments were conducted at different temperatures of 20°C, 57°C and 94°C to identify the most appropriate sorptive – sorbent system for dynamic adsorption and TSA research. Once the isotherm experiments were accomplished, breakthrough curve experiments were subsequently investigated. Finally, TSA process was conducted with the activated carbon regeneration at the elevated temperature of 125°C. Consequently, initial obtained results proved the feasibility of the proposed TSA technique for pesticide removal in aqueous phase.
  • Item
    Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide
    (New York, NY : American Inst. of Physics, 2014) Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.
    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913-at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length. © 2014 Author(s).
  • Item
    Significant Upregulation of Alzheimer's β-Amyloid Levels in a Living System Induced by Extracellular Elastin Polypeptides
    (Weinheim : Wiley-VCH, 2019) Ma, Chao; Su, Juanjuan; Sun, Yao; Feng, Yang; Shen, Nolan; Li, Bo; Liang, Yingxia; Yang, Xintong; Wu, Hui; Zhang, Hongjie; Herrmann, Andreas; Tanzi, Rudolph E.; Liu, Kai; Zhang, Can
    Alzheimer's disease (AD) is a neurodegenerative disorder and the primary cause of age-related dementia. The etiology of AD is complex and has not been completely elucidated. Herein, we report that treatment with elastin-like polypeptides (ELPs), a component of the brain extracellular matrix (ECM), significantly increased the levels of AD-related amyloid-β peptides (Aβ) both in vitro and in vivo. Regarding the molecular mechanism(s), the upregulation of Aβ levels was related to increased proteolytic processing of the amyloid precursor protein. Furthermore, nesting tests demonstrated that the ELP-treated animals showed significant neurobehavioral deficits with cognitive impairment. These results suggest that the elastin is associated with AD-related pathological and behavioral changes. This finding presents a new aspect for Alzheimer's amyloidosis event and provides a great promise in developing ELP-based model systems to better understand the pathogenesis of AD. © 2019
  • Item
    Are Directed Evolution Approaches Efficient in Exploring Nature’s Potential to Stabilize a Lipase in Organic Cosolvents?
    (Basel : MDPI, 2017) Markel, Ulrich; Zhu, Leilei; Frauenkron-Machedjou, Victorine; Zhao, Jing; Bocola, Marco; Davari, Mehdi; Jaeger, Karl-Erich; Schwaneberg, Ulrich
    Despite the significant advances in the field of protein engineering, general design principles to improve organic cosolvent resistance of enzymes still remain undiscovered. Previous studies drew conclusions to engineer enzymes for their use in water-miscible organic solvents based on few amino acid substitutions. In this study, we conduct a comparison of a Bacillus subtilis lipase A (BSLA) library—covering the full natural diversity of single amino acid substitutions at all 181 positions of BSLA—with three state of the art random mutagenesis methods: error-prone PCR (epPCR) with low and high mutagenesis frequency (epPCR-low and high) as well as a transversion-enriched Sequence Saturation Mutagenesis (SeSaM-Tv P/P) method. Libraries were searched for amino acid substitutions that increase the enzyme’s resistance to the water-miscible organic cosolvents 1,4-dioxane (DOX), 2,2,2-trifluoroethanol (TFE), and dimethyl sulfoxide (DMSO). Our analysis revealed that 5%–11% of all possible single substitutions (BSLA site-saturation mutagenesis (SSM) library) contribute to improved cosolvent resistance. However, only a fraction of these substitutions (7%–12%) could be detected in the three random mutagenesis libraries. To our knowledge, this is the first study that quantifies the capability of these diversity generation methods generally employed in directed evolution campaigns and compares them to the entire natural diversity with a single substitution. Additionally, the investigation of the BSLA SSM library revealed only few common beneficial substitutions for all three cosolvents as well as the importance of introducing surface charges for organic cosolvent resistance—most likely due to a stronger attraction of water molecules. © 2017 by the authors.
  • Item
    Towards New Robust Zn(II) Complexes for the Ring-Opening Polymerization of Lactide Under Industrially Relevant Conditions
    (Weinheim : Wiley-VCH, 2019) Schäfer, Pascal M.; Dankhoff, Katja; Rothemund, Matthias; Ksiazkiewicz, Agnieszka N.; Pich, Andrij; Schobert, Rainer; Weber, Birgit; Herres-Pawlis, Sonja
    The synthesis of bio-based and biodegradable plastics is a hot topic in research due to growing environmental problems caused by omnipresent plastics. As a result, polylactide, which has been known for years, has seen a tremendous increase in industrial production. Nevertheless, the manufacturing process using the toxic catalyst Sn(Oct)2 is very critical. As an alternative, five zinc acetate complexes have been synthesized with Schiff base-like ligands that exhibit high activity in the ring-opening polymerization of non-purified lactide. The systems bear different side arms in the ligand scaffold. The influence of these substituents has been analyzed. For a detailed description of the catalytic activities, the rate constants kapp and kp were determined using in-situ Raman spectroscopy at a temperature of 150 °C. The polymers produced have molar masses of up to 71 000 g mol−1 and are therefore suitable for a variety of applications. Toxicity measurements carried out for these complexes proved the nontoxicity of the systems. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.