Search Results

Now showing 1 - 10 of 21
  • Item
    Aerial river management by smart cross-border reforestation
    (Amsterdam [u.a.] : Elsevier Science, 2019) Weng, Wei; Costa, Luís; Lüdeke, Matthias K.B.; Zemp, Delphine C.
    In the face of increasing socio-economic and climatic pressures in growing cities, it is rational for managers to consider multiple approaches for securing water availability. One often disregarded option is the promotion of reforestation in source regions supplying important quantities of atmospheric moisture transported over long distances through aerial rivers, affecting water resources of a city via precipitation and runoff (‘smart reforestation’). Here we present a case demonstrating smart reforestation's potential as a water management option. Using numerical moisture back-tracking models, we identify important upwind regions contributing to the aerial river of Santa Cruz de la Sierra (Bolivia). Simulating the effect of reforestation in the identified regions, annual precipitation and runoff reception in the city was found to increase by 1.25% and 2.30% respectively, while runoff gain during the dry season reached 26.93%. Given the city's population growth scenarios, the increase of the renewable water resource by smart reforestation could cover 22–59% of the additional demand by 2030. Building on the findings, we argue for a more systematic consideration of aerial river connections between regions in reforestation and land planning for future challenges. © 2019 The Authors
  • Item
    Mitigating poverty: The patterns of multiple carbon tax and recycling regimes for Peru
    (Amsterdam [u.a.] : Elsevier Science, 2021) Malerba, Daniele; Gaentzsch, Anja; Ward, Hauke
    Carbon taxes are an economically effective and efficient policy measure to address climate change mitigation. However, they can have severe adverse distributional effects. Recycling parts of the fiscal revenues to vulnerable, lower income households through cash transfers (social assistance) is an option to also overcome associated political difficulties. This paper simulates the distributional impacts of such a combined policy reform in Peru. In a first step, we assess the distributional impacts of varying carbon tax rates. In a second step, we evaluate different scenarios of recycling revenues through existing or expanded transfer schemes towards vulnerable households. The results indicate that a national carbon tax, without compensation, would increase poverty but have no significant impact on inequality. When tax revenues are recycled through transfer schemes, however, poverty would actually decrease. Depending on the amount to be redistributed and the design of the cash transfer scheme, our simulations show a proportional reduction in the poverty headcount of up to around 17%. In addition, the paper underlines how crucial it is to go beyond aggregate measures of poverty to better identify losers from such reform; and assure that the “leave no one behind” principle of the Sustainable Development Goals (SDGs) is addressed.
  • Item
    Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets
    (Amsterdam [u.a.] : Elsevier Science, 2021) Osorio, Sebastian; Tietjen, Oliver; Pahle, Michael; Pietzcker, Robert C.; Edenhofer, Ottmar
    The stringency of the EU's Emission Trading System (ETS) is bound to be ratcheted-up to deliver on more ambitious goals as formulated in the EU's Green Deal. Tightening the cap needs to consider the interactions with the Market Stability Reserve (MSR), which will be reviewed in 2021. We analyse these issues using the model LIMES-EU. First, we examine how revising MSR parameters impacts allowance cancellations. We find that varying key design parameters leads to cancellations in the range of 2.6–7.9 Gt – compared to 5.1 Gt under current regulation. Overall, the bank thresholds, which define when there is intake to/outtake from the MSR, have the highest impact. Intake rates above 12% only have a limited effect, and cause oscillatory intake behaviour. Second, we analyse how more ambitious climate 2030 targets can be achieved by adjusting the linear reduction factor (LRF). We find that the LRF increases MSR cancellations substantially up to 10.0 Gt. This implies that increasing its value from currently 2.2% to only 2.6% could be consistent with an EU-wide target of −55% by 2030. However, MSR cancellations are subject to large uncertainty, which increases the complexity of the market and induces high price uncertainty.
  • Item
    Evaluating the grassland NPP dynamics in response to climate change in Tanzania
    (Amsterdam [u.a.] : Elsevier Science, 2021) Zarei, Azin; Chemura, Abel; Gleixner, Stephanie; Hoff, Holger
    Livestock is important for livelihoods of millions of people across the world and yet climate change risk and impacts assessments are predominantly on cropping systems. Climate change has significant impacts on Net Primary Production (NPP) which is a grassland dynamics indicator. This study aimed to analyze the spatio-temporal changes of NPP under climate scenario RCP2.6 and RCP8.5 in the grassland of Tanzania by 2050 and link this to potential for key livestock species. To this end, a regression model to estimate NPP was developed based on temperature (T), precipitation (P) and evapotranspiration (ET) during the period 2001–2019. NPP fluctuation maps under future scenarios were produced as difference maps of the current (2009–2019) and future (2050). The vulnerable areas whose NPP is mostly likely to get affected by climate change in 2050 were identified. The number of livestock units in grasslands was estimated according to NPP in grasslands of Tanzania at the Provincial levels. The results indicate the mean temperature and evapotranspiration are projected to increase under both emission scenarios while precipitation will decrease. NPP is significantly positively correlated with Tmax and ET and projected increases in these variables will be beneficial to NPP under climate change. Increases of 17% in 2050 under RCP8.5 scenario are projected, with the southern parts of the country projected to have the largest increase in NPP. The southwest areas showed a decreasing trend in mean NPP of 27.95% (RCP2.6) and 13.43% (RCP8.5). The highest decrease would occur in the RCP2.6 scenario in Ruvuma Province, by contrast, the mean NPP value in the western, eastern, and central parts would increase in 2050 under both Scenarios, the largest increase would observe in Kilimanjaro, Dar-Es-Salaam and Dodoma Provinces. It was found that the number of grazing livestock such as cattle, sheep, and goats will increase in the Tanzania grasslands under both climate scenarios. As the grassland ecosystems under intensive exploitation are fragile ecosystems, a combination of improving grassland productivity and grassland conservation under environmental pressures such as climate change should be considered for sustainable grassland management.
  • Item
    Web technologies for environmental Big Data
    (Amsterdam [u.a.] : Elsevier Science, 2014) Vitolo, Claudia; Elkhatib, Yehia; Reusser, Dominik; Macleod, Christopher J.A.; Buytaert, Wouter
    Recent evolutions in computing science and web technology provide the environmental community with continuously expanding resources for data collection and analysis that pose unprecedented challenges to the design of analysis methods, workflows, and interaction with data sets. In the light of the recent UK Research Council funded Environmental Virtual Observatory pilot project, this paper gives an overview of currently available implementations related to web-based technologies for processing large and heterogeneous datasets and discuss their relevance within the context of environmental data processing, simulation and prediction. We found that, the processing of the simple datasets used in the pilot proved to be relatively straightforward using a combination of R, RPy2, PyWPS and PostgreSQL. However, the use of NoSQL databases and more versatile frameworks such as OGC standard based implementations may provide a wider and more flexible set of features that particularly facilitate working with larger volumes and more heterogeneous data sources.
  • Item
    Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models
    (Amsterdam [u.a.] : Elsevier Science, 2018) Krey, Volker; Guo, Fei; Kolp, Peter; Zhou, Wenji; Schaeffer, Roberto; Awasthy, Aayushi; Bertram, Christoph; de Boer, Harmen-Sytze; Fragkos, Panagiotis; Fujimori, Shinichiro; He, Chenmin; Iyer, Gokul; Keramidas, Kimon; Köberle, Alexandre C.; Oshiro, Ken; Reis, Lara Aleluia; Shoai-Tehrani, Bianka; Vishwanathan, Saritha; Capros, Pantelis; Drouet, Laurent; Edmonds, James E.; Garg, Amit; Gernaat, David E.H.J.; Jiang, Kejun; Kannavou, Maria; Kitous, Alban; Kriegler, Elmar; Luderer, Gunnar; Mathur, Ritu; Muratori, Matteo; Sano, Fuminori; van Vuuren, Detlef P.
    Integrated assessment models are extensively used in the analysis of climate change mitigation and are informing national decision makers as well as contribute to international scientific assessments. This paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among fifteen different global and national integrated assessment models. Particular focus is given to six major economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that techno-economic characteristics are quite different across integrated assessment models, both for the base year and future years. It is, however, important to recognize that techno-economic assessments from the literature exhibit an equally large range of parameters as the integrated assessment models reviewed. Beyond numerical differences, the representation of technologies also differs among models, which needs to be taken into account when comparing numerical parameters. While desirable, it seems difficult to fully harmonize techno-economic parameters across a broader range of models due to structural differences in the representation of technology. Therefore, making techno-economic parameters available in the future, together with of the technology representation as well as the exact definitions of the parameters should become the standard approach as it allows an open discussion of appropriate assumptions. © 2019 The Authors
  • Item
    Future changes in consumption: The income effect on greenhouse gas emissions
    (Amsterdam [u.a.] : Elsevier Science, 2021) Bjelle, Eivind Lekve; Wiebe, Kirsten S.; Többen, Johannes; Tisserant, Alexandre; Ivanova, Diana; Vita, Gibran; Wood, Richard
    The scale and patterns of household consumption are important determinants of environmental impacts. Whilst affluence has been shown to have a strong correlation with environmental impact, they do not necessarily grow at the same rate. Given the apparent contradiction between the sustainable development goals of economic growth and environmental protection, it is important to understand the effect of rising affluence and concurrent changing consumption patterns on future environmental impacts. Here we develop an econometric demand model based on the data available from a global multiregional input-output dataset. We model future household consumption following scenarios of population and GDP growth for 49 individual regions. The greenhouse gas (GHG) emissions resulting from the future household demand is then explored both with and without consideration of the change in expenditure over time on different consumption categories. Compared to a baseline scenario where final demand grows in line with the 2011 average consumption pattern up until 2030, we find that changing consumer preferences with increasing affluence has a small negative effect on global cumulative GHG emissions. The differences are more profound on both a regional and a product level. For the demand model scenario, we find the largest decrease in GHG emissions for the BRICS and other developing countries, while emissions in North America and the EU remain unchanged. Decreased spending and resulting emissions on food are cancelled out by increased spending and emissions on transportation. Despite relatively small global differences between the scenarios, the regional and sectoral wedges indicate that there is a large untapped potential in environmental policies and lifestyle changes that can complement the technological transition towards a low-emitting society.
  • Item
    Rapid aggregation of global gridded crop model outputs to facilitate cross-disciplinary analysis of climate change impacts in agriculture
    (Amsterdam [u.a.] : Elsevier Science, 2015) Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol
    We discuss an on-line tool that facilitates access to the large collection of climate impacts on crop yields produced by the Agricultural Model Intercomparison and Improvement Project. This collection comprises the output of seven crop models which were run on a global grid using climate data from five different general circulation models under the current set of representative pathways. The output of this modeling endeavor consists of more than 36,000 publicly available global grids at a spatial resolution of one half degree. We offer flexible ways to aggregate these data while reducing the technical barriers implied by learning new download platforms and specialized formats. The tool is accessed trough any standard web browser without any special bandwidth requirement.
  • Item
    The implications of initiating immediate climate change mitigation - A potential for co-benefits?
    (Amsterdam [u.a.] : Elsevier Science, 2014) Schwanitz, Valeria Jana; Longden, Thomas; Knopf, Brigitte; Capros, Pantelis
    Fragmented climate policies across parties of the United Nations Framework on Climate Change have led to the question of whether initiating significant and immediate climate change mitigation can support the achievement of other non-climate objectives. We analyze such potential co-benefits in connection with a range of mitigation efforts using results from eleven integrated assessment models. These model results suggest that an immediate mitigation of climate change coincide for Europe with an increase in energy security and a higher utilization of non-biomass renewable energy technologies. In addition, the importance of phasing out coal is highlighted with external cost estimates showing substantial health benefits consistent with the range of mitigation efforts.
  • Item
    CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies
    (Amsterdam [u.a.] : Elsevier Science, 2013) Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Méjean, Aurélie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef
    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.