Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Zopfgruppen, die Yang–Baxter-Gleichung und Unterfaktoren

2021, Lechner, Gandalf

Die Yang–Baxter-Gleichung ist eine faszinierende Gleichung, die in vielen Gebieten der Physik und der Mathematik auftritt und die am besten diagrammatisch dargestellt wird. Dieser Snapshot schlägt einen weiten Bogen vom Zöpfeflechten über die Yang–Baxter- Gleichung bis hin zur aktuellen Forschung zu Systemen von unendlichdimensionalen Algebren, die wir „Unterfaktoren“ nennen.

Loading...
Thumbnail Image
Item

Rotating needles, vibrating strings, and Fourier summation

2020, Zahl, Joshua

We give a brief survey of the connection between seemingly unrelated problems such as sets in the plane containing lines pointing in many directions, vibrating strings and drum heads, and a classical problem from Fourier analysis.

Loading...
Thumbnail Image
Item

Emergence in biology and social sciences

2022, Hoffmann, Franca, Merino-Aceituno, Sara

Mathematics is the key to linking scientific knowledge at different scales: from microscopic to macroscopic dynamics. This link gives us understanding on the emergence of observable patterns like flocking of birds, leaf venation, opinion dynamics, and network formation, to name a few. In this article, we explore how mathematics is able to traverse scales, and in particular its application in modelling collective motion of bacteria driven by chemical signalling.

Loading...
Thumbnail Image
Item

Quantum symmetry

2020, Weber, Moritz

In mathematics, symmetry is usually captured using the formalism of groups. However, the developments of the past few decades revealed the need to go beyond groups: to “quantum groups”. We explain the passage from spaces to quantum spaces, from groups to quantum groups, and from symmetry to quantum symmetry, following an analytical approach.

Loading...
Thumbnail Image
Item

Quantum symmetry

2020, Caspers, Martijn

The symmetry of objects plays a crucial role in many branches of mathematics and physics. It allowed, for example, the early prediction of the existence of new small particles. “Quantum symmetry” concerns a generalized notion of symmetry. It is an abstract way of characterizing the symmetry of a much richer class of mathematical and physical objects. In this snapshot we explain how quantum symmetry emerges as matrix symmetries using a famous example: Mermin’s magic square. It shows that quantum symmetries can solve problems that lie beyond the reach of classical symmetries, showing that quantum symmetries play a central role in modern mathematics.

Loading...
Thumbnail Image
Item

C∗ -algebras: structure and classification

2021, Kerr, David

The theory of C∗C∗-algebras traces its origins back to the development of quantum mechanics and it has evolved into a large and highly active field of mathematics. Much of the progress over the last couple of decades has been driven by an ambitious program of classification launched by George A. Elliott in the 1980s, and just recently this project has succeeded in achieving one of its central goals in an unexpectedly dramatic fashion. This Snapshot aims to recount some of the fundamental ideas at play.

Loading...
Thumbnail Image
Item

Determinacy versus indeterminacy

2020, Berg, Christian

Can a continuous function on an interval be uniquely determined if we know all the integrals of the function against the natural powers of the variable? Following Weierstrass and Stieltjes, we show that the answer is yes if the interval is finite, and no if the interval is infinite.