Search Results

Now showing 1 - 10 of 239
Loading...
Thumbnail Image
Item

Structure-property relationships in nanoporous metallic glasses

2016, Şopu, D., Soyarslan, C., Sarac, B., Bargmann, S., Stoica, M., Eckert, J.

We investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64 Zr36 glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.

Loading...
Thumbnail Image
Item

Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys

2015, Stoica, Mihai, Ramasamy, Parthiban, Kaban, Ivan, Scudino, Sergio, Nicoara, Mircea, Vaughan, Gavin B.M., Wright, Jonathan, Kumar, Ravi, Eckert, Jürgen

Fully amorphous rods with diameters up to 2 mm diameter were obtained upon 0.5 at.% Cu addition to the Fe36Co36B19.2Si4.8Nb4 bulk metallic glass. The Cu-added glass shows a very good thermal stability but, in comparison with the Cu-free base alloy, the entire crystallization behavior is drastically changed. Upon heating, the glassy (Fe36Co36B19.2Si4.8Nb4)99.5Cu0.5 samples show two glass transitions-like events, separated by an interval of more than 100 K, in between which a bcc-(Fe,Co) solid solution is formed. The soft magnetic properties are preserved upon Cu-addition and the samples show a saturation magnetization of 1.1 T combined with less than 2 A/m coercivity. The relaxation behavior prior to crystallization, as well as the crystallization behavior, were studied by time-resolved X-ray diffraction using synchrotron radiation. It was found that both glassy alloys behave similar at temperatures below the glass transition. Irreversible structural transformations take place when approaching the glass transition and in the supercooled liquid region.

Loading...
Thumbnail Image
Item

High-Quality Graphene Using Boudouard Reaction

2022, Grebenko, Artem K., Krasnikov, Dmitry V., Bubis, Anton V., Stolyarov, Vasily S., Vyalikh, Denis V., Makarova, Anna A., Fedorov, Alexander, Aitkulova, Aisuluu, Alekseeva, Alena A., Gilshtein, Evgeniia, Bedran, Zakhar, Shmakov, Alexander N., Alyabyeva, Liudmila, Mozhchil, Rais N., Ionov, Andrey M., Gorshunov, Boris P., Laasonen, Kari, Podzorov, Vitaly, Nasibulin, Albert G.

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.

Loading...
Thumbnail Image
Item

Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries

2018-2-6, Madian, Mahmoud, Eychmüller, Alexander, Giebeler, Lars

The lithium ion battery (LIB) has proven to be a very reliably used system to store electrical energy, for either mobile or stationary applications. Among others, TiO2-based anodes are the most attractive candidates for building safe and durable lithium ion batteries with high energy density. A variety of TiO2 nanostructures has been thoroughly investigated as anodes in LIBs, e.g., nanoparticles, nanorods, nanoneedles, nanowires, and nanotubes discussed either in their pure form or in composites. In this review, we present the recent developments and breakthroughs demonstrated to synthesize safe, high power, and low cost nanostructured titania-based anodes. The reader is provided with an in-depth review of well-oriented TiO2-based nanotubes fabricated by anodic oxidation. Other strategies for modification of TiO2-based anodes with other elements or materials are also highlighted in this report.

Loading...
Thumbnail Image
Item

Sperm Micromotors for Cargo Delivery through Flowing Blood

2020, Xu, Haifeng, Medina-Sánchez, Mariana, Maitz, Manfred F., Werner, Carsten, Schmidt, Oliver G.

Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.

Loading...
Thumbnail Image
Item

Persistent peri-Heptacene: Synthesis and In Situ Characterization

2021, Ajayakumar, M.R., Ma, Ji, Lucotti, Andrea, Schellhammer, Karl Sebastian, Serra, Gianluca, Dmitrieva, Evgenia, Rosenkranz, Marco, Komber, Hartmut, Liu, Junzhi, Ortmann, Frank, Tommasini, Matteo, Feng, Xinliang

n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Tailoring Intermolecular Interactions Towards High‐Performance Thermoelectric Ionogels at Low Humidity

2022, Zhao, Wei, Sun, Tingting, Zheng, Yiwei, Zhang, Qihao, Huang, Aibin, Wang, Lianjun, Jiang, Wan

Development of ionic thermoelectric (iTE) materials is of immense interest for efficient heat-to-electricity conversion due to their giant ionic Seebeck coefficient (Si), but challenges remain in terms of relatively small Si at low humidity, poor stretchability, and ambiguous interaction mechanism in ionogels. Herein, a novel ionogel is reported consisting of polyethylene oxide (PEO), polyethylene oxide-polypropylene oxide-polyethylene oxide (P123), and 1-ethyl-3-methylimidazolium acetate (Emim:OAC). By delicately designing the interactions between ions and polymers, the migration of anions is restricted due to their strong binding with the hydroxyl groups of polymers, while the transport of cations is facilitated through segmental motions due to the increased amorphous regions, thereby leading to enlarged diffusion difference between the cations and anions. Moreover, the plasticizing effect of P123 and Emim:OAC can increase the elongation at break. As a consequence, the ionogel exhibits excellent properties including high Si (18 mV K−1 at relative humidity of 60%), good ionic conductivity (1.1 mS cm−1), superior stretchability (787%), and high stability (over 80% retention after 600 h). These findings show a promising strategy to obtain multifunctional iTE materials by engineering the intermolecular interactions and demonstrate the great potential of ionogels for harvesting low-grade heat in human-comfortable humidity environments.

Loading...
Thumbnail Image
Item

Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion

2018, Ebner, Christian, Escher, Benjamin, Gammer, Christoph, Eckert, Jürgen, Pauly, Simon, Rentenberger, Christian

Cu45Zr45Al5Ag5 bulk metallic glass samples, processed by high pressure torsion (HPT) under various conditions, were characterized using synchrotron X-ray diffraction, nanoindentation, differential scanning calorimetry, atomic force and transmission electron microscopy. The experimental results clearly show that HPT modifies the amorphous structure by increasing the mean atomic volume. The level of rejuvenation, correlated with the excess mean atomic volume, is enhanced at higher shear strains as inferred from relaxation enthalpies. By mapping of structural and mechanical quantities, the strain-induced rejuvenated state is characterized on cross-sectional HPT samples on a local scale. A clear correlation both between elastic and plastic softening and between softening and excess mean atomic volume is obtained. But also the heterogeneity of the HPT induced rejuvenation is revealed, resulting in the formation of highly strain-softened regions next to less-deformed ones. A hardness drop of up to 20% is associated with an estimated increase of the mean atomic volume of up to 0.75%. Based on synchrotron X-ray diffraction and nanoindentation measurements it is concluded that elastic fluctuations are enhanced in the rejuvenated material on different length scales down to atomic scale. Furthermore, the calculated flexibility volume and the corresponding average mean square atomic displacement is increased. The plastic response during nanoindentation indicates that HPT processing promotes a more homogeneous-like deformation.

Loading...
Thumbnail Image
Item

Thiophene-Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Co-Catalyst-Free Photoelectrochemical Water Reduction in Alkaline Medium

2021, Borrelli, Mino, Querebillo, Christine Joy, Pastoetter, Dominik L., Wang, Tao, Milani, Alberto, Casari, Carlo, Khoa Ly, Hoang, He, Fan, Hou, Yang, Neumann, Christof, Turchanin, Andrey, Sun, Hanjun, Weidinger, Inez M., Feng, Xinliang

Although being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b′]dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2′,3′-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 μA cm−2 and 120 μA cm−2 (at 0.3 V vs. RHE; pH 13), which are 4.2 and 3 times higher than that of pDET, respectively. Moreover, by combining DFT calculations and electrochemical operando resonance Raman spectroscopy, we propose that the electron-enriched Cβ of the outer thiophene rings of pDTT are the water dissociation active sites, while the −C≡C− bonds function as the active sites for hydrogen evolution. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols

2017-4-27, Zaripov, Ruslan, Vavilova, Evgeniya, Khairuzhdinov, Iskander, Salikhov, Kev, Voronkova, Violeta, Abdulmalic, Mohammad A., Meva, Francois E., Weheabby, Saddam, Rüffer, Tobias, Büchner, Bernd, Kataev, Vladislav

We have investigated with the pulsed ESR technique at X- and Q-band frequencies the coherence and relaxation of Cu spins S = 1/2 in single crystals of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opba)] (1%) in the host lattice of [n-Bu4N]2[Ni(opba)] (99%, opba = o-phenylenebis(oxamato)) and of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opbon-Pr2)] (1%) in the host lattice of [n-Bu4N]2[Ni(opbon-Pr2)] (99%, opbon-Pr2 = o-phenylenebis(N(propyl)oxamidato)). For that we have measured the electron spin dephasing time Tm at different temperatures with the two-pulse primary echo and with the special Carr–Purcell–Meiboom–Gill (CPMG) multiple microwave pulse sequence. Application of the CPMG protocol has led to a substantial increase of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and protons in [Cu(opbon-Pr2)]2– as compared to [Cu(opba)]2– yields significantly shorter Tm times. Such a detrimental effect of the opbon-Pr24− ligands has to be considered when discussing a potential application of the Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes as building blocks of more complex molecular structures in prototype spintronic devices. Furthermore, in our work we propose an improved CPMG pulse protocol that enables elimination of unwanted echoes that inevitably appear in the case of inhomogeneously broadened ESR spectra due to the selective excitation of electron spins.