Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Polymeric Membranes With Sufficient Thermo‐Mechanical Stability to Deploy Temperature Enhanced Backwash

2021, Aumeier, Benedikt M., Vollmer, Fabian, Lenfers, Simon, Yüce, Süleyman, Wessling, Matthias

The alternative membrane cleaning method Temperature Enhanced Backwash exploits elevated temperatures of typically 125 °C to realize high shear rate. This exceeds usual operating temperatures by far. Therefore, the thermo-mechanical properties of polymeric membranes were investigated. A repeated load cycle testing was suited and sensitive to detect the failure of membrane material and potting. All tested PES membranes showed to be stable during the repeated load cycle testing. The potting adhesive may be decisive, thus, a tensile test at 125 °C is proposed. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Enabling the measurement of particle sizes in stirred colloidal suspensions by embedding dynamic light scattering into an automated probe head

2016, de Kanter, Martinus, Meyer-Kirschner, Julian, Viell, Jörn, Mitsos, Alexander, Kather, Michael, Pich, Andrij, Janzen, Christoph

A novel probe head design is introduced, which enables in-line monitoring of particle sizes in undiluted stirred fluids using dynamic light scattering. The novel probe head separates a small sample volume of 0.65 ml from the bulk liquid by means of an impeller. In this sample volume, particle sizing is performed using a commercially available fiber-optical backscatter probe. While conventional light scattering measurements in stirred media fail due to the superposition of Brownian’ motion and forced convection, undistorted measurements are possible with the proposed probe head. One measurement takes approximately 30 s used for liquid exchange by rotation of the impeller and for collection of scattered light. The probe head is applied for in-line monitoring of the particle growth during microgel synthesis by precipitation polymerization in a one liter laboratory reactor. The in-line measurements are compared to off-line measurements and show a good agreement.

Loading...
Thumbnail Image
Item

Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures

2016, Viell, Jörn, Inouye, Hideyo, Szekely, Noemi K., Frielinghaus, Henrich, Marks, Caroline, Wang, Yumei, Anders, Nico, Spiess, Antje C., Makowski, Lee

Background: The valorization of biomass for chemicals and fuels requires efficient pretreatment. One effective strategy involves the pretreatment with ionic liquids which enables enzymatic saccharification of wood within a few hours under mild conditions. This pretreatment strategy is, however, limited by water and the ionic liquids are rather expensive. The scarce understanding of the involved effects, however, challenges the design of alternative pretreatment concepts. This work investigates the multi length-scale effects of pretreatment of wood in 1-ethyl-3-methylimidazolium acetate (EMIMAc) in mixtures with water using spectroscopy, X-ray and neutron scattering. Results: The structure of beech wood is disintegrated in EMIMAc/water mixtures with a water content up to 8.6 wt%. Above 10.7 wt%, the pretreated wood is not disintegrated, but still much better digested enzymatically compared to native wood. In both regimes, component analysis of the solid after pretreatment shows an extraction of few percent of lignin and hemicellulose. In concentrated EMIMAc, xylan is extracted more efficiently and lignin is defunctionalized. Corresponding to the disintegration at macroscopic scale, SANS and XRD show isotropy and a loss of crystallinity in the pretreated wood, but without distinct reflections of type II cellulose. Hence, the microfibril assembly is decrystallized into rather amorphous cellulose within the cell wall. Conclusions: The molecular and structural changes elucidate the processes of wood pretreatment in EMIMAc/water mixtures. In the aqueous regime with >10.7 wt% water in EMIMAc, xyloglucan and lignin moieties are extracted, which leads to coalescence of fibrillary cellulose structures. Dilute EMIMAc/water mixtures thus resemble established aqueous pretreatment concepts. In concentrated EMIMAc, the swelling due to decrystallinization of cellulose, dissolution of cross-linking xylan, and defunctionalization of lignin releases the mechanical stress to result in macroscopic disintegration of cells. The remaining cell wall constituents of lignin and hemicellulose, however, limit a recrystallization of the solvated cellulose. These pretreatment mechanisms are beyond common pretreatment concepts and pave the way for a formulation of mechanistic requirements of pretreatment with simpler pretreatment liquors. © 2016 Viell et al.

Loading...
Thumbnail Image
Item

A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT

2021, Markel, Ulrich, Lanvers, Pia, Sauer, Daniel F., Wittwer, Malte, Dhoke, Gaurao V., Davari, Mehdi D., Schiffels, Johannes, Schwaneberg, Ulrich

Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases. © 2020 The Authors. Published by Wiley-VCH GmbH