Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Towards hybrid one-pot/one-electrode Pd-NPs-based nanoreactors for modular biocatalysis

2021, Koch, M., Apushkinskaya, N., Zolotukhina, E.V., Silina, Y.E.

Here, fundamental aspects affecting template-assisted engineering of oxidase-associated peroxide oxidation co-catalysis of the modeled microanalytical system based on the hybrid palladium nanoparticles (Pd-NPs) with tailored functional properties were studied. By an accurate tuning and validation of the experimental setup, a modular Pd-NPs-doped one-pot/one-electrode amperometric nanobiosensor for advanced multiplex analyte detection was constructed. The specific operational conditions (electrochemical read-out mode, pH, regeneration procedure) of the modular one-pot/one-electrode nanobiosensor allowed a reliable sensing of L-lactate (with linear dynamic range, LDR = 500 µM – 2 mM, R2 = 0.977), D-glucose (with LDR = 200 µM – 50 mM, R2 = 0.987), hydrogen peroxide (with LDR = 20 µM – 100 mM, R2 = 0.998) and glutaraldehyde (with LDR = 1 – 100 mM, R2 = 0.971). In addition, mechanistic aspects influencing the performance of Pd-NPs-doped one-pot/one-electrode for multiplex analyte sensing were studied in detail. The designed one-pot/one-electrode amperometric nanobiosensor showed a thin layer electrochemical behavior that greatly enhanced electron transfer between the functional hybrid layer and the electrode. Finally, a specific regeneration procedure of the hybrid one-pot/one-electrode and algorithm towards its usage for modular biocatalysis were developed. The reported strategy can readily be considered as a guideline towards the fabrication of commercialized nanobiosensors with tailored properties for advanced modular biocatalysis.

Loading...
Thumbnail Image
Item

Nanoscale Faceting and Ligand Shell Structure Dominate the Self-Assembly of Nonpolar Nanoparticles into Superlattices

2022, Bo, Arixin, Liu, Yawei, Kuttich, Björn, Kraus, Tobias, Widmer-Cooper, Asaph, de Jonge, Niels

Self-assembly of nanoscale structures at liquid–solid interfaces occurs in a broad range of industrial processes and is found in various phenomena in nature. Conventional theory assumes spherical particles and homogeneous surfaces, but that model is oversimplified, and nanoscale in situ observations are needed for a more complete understanding. Liquid-phase scanning transmission electron microscopy (LP-STEM) is used to examine the interactions that direct the self-assembly of superlattices formed by gold nanoparticles (AuNPs) in nonpolar liquids. Varying the molecular coating of the substrate modulates short-range attraction and leads to switching between a range of different geometric structures, including hexagonal close-packed (hcp), simple hexagonal (sh), dodecahedral quasi-crystal (dqc), and body-centered cubic (bcc) lattices, as well as random distributions. Langevin dynamics simulations explain the experimental results in terms of the interplay between nanoparticle faceting, ligand shell structure, and substrate–NP interactions.

Loading...
Thumbnail Image
Item

Phase diagram studies for the growth of (Mg,Zr):SrGa12O19 crystals

2021, Klimm, Detlef, Szczefanowicz, Bartosz, Wolff, Nora, Bickermann, Matthias

By differential thermal analysis, a concentration field suitable for the growth of Zr, Mg co-doped strontium hexagallate crystals was observed that corresponds well with known experimental results. It was shown that the melting point of doped crystal is ca. 60 K higher than that of undoped crystals. This higher melting points indicate hexagallate phase stabilization by Zr, Mg co-doping and increase the growth window of (Mg,Zr):SrGa12O19, compared to undoped SrGa12O19 that grows from SrO–Ga2O3 melts.

Loading...
Thumbnail Image
Item

On the viscous dissipation caused by randomly rough indenters in smooth sliding motion

2021, Sukhomlinov, Sergey, Müser, Martin H.

The viscous dissipation between rigid, randomly rough indenters and linearly elastic counter bodies sliding past them is investigated using Green’s function molecular dynamics. The study encompasses a variety of models differing in the height spectra properties of the rigid indenter, in the viscoelasticity of the elastomer, and in their interaction. All systems reveal the expected damping linear in sliding velocity at small and a pronounced maximum at intermediate . Persson’s theory of rubber friction, which is adopted to the studied model systems, reflects all observed trends. However, close quantitative agreement is only found up to intermediate sliding velocities. Relative errors in the friction force become significant once the contact area is substantially reduced by sliding.