Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Collaborative annotation and semantic enrichment of 3D media

2022, Rossenova, Lozana, Schubert, Zoe, Vock, Richard, Sohmen, Lucia, Günther, Lukas, Duchesne, Paul, Blümel, Ina, Aizawa, Akiko

A new FOSS (free and open source software) toolchain and associated workflow is being developed in the context of NFDI4Culture, a German consortium of research- and cultural heritage institutions working towards a shared infrastructure for research data that meets the needs of 21st century data creators, maintainers and end users across the broad spectrum of the digital libraries and archives field, and the digital humanities. This short paper and demo present how the integrated toolchain connects: 1) OpenRefine - for data reconciliation and batch upload; 2) Wikibase - for linked open data (LOD) storage; and 3) Kompakkt - for rendering and annotating 3D models. The presentation is aimed at librarians, digital curators and data managers interested in learning how to manage research datasets containing 3D media, and how to make them available within an open data environment with 3D-rendering and collaborative annotation features.

Loading...
Thumbnail Image
Item

IWILDS'22 - Third International Workshop on Investigating Learning During Web Search

2022, Hoppe, Anett, Yu, Ran, Liu, Jiqun, Amigo, Enrique

Since its inception, the World Wide Web has become a major information source, consulted for a diversity of informational tasks. With an abundance of information available online, Web search engines have been a main entry point, supporting users in finding suitable Web content for ever more complex information needs. The IWILDS workshop series invites research on complex search activities related to human learning. It provides an interdisciplinary platform for the presentation and discussion of recent research on human learning on the Web, welcoming perspectives from computer & information science, education and psychology.

Loading...
Thumbnail Image
Item

PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces

2020, Nittala, Aditya Shekhar, Khan, Arshad, Kruttwig, Klaus, Kraus, Tobias, Steimle, Jürgen, Bernhaupt, Regina

Advances in rapid prototyping platforms have made physiological sensing accessible to a wide audience. However, off-the-shelf electrodes commonly used for capturing biosignals are typically thick, non-conformal and do not support customization. We present PhysioSkin, a rapid, do-it-yourself prototyping method for fabricating custom multi-modal physiological sensors, using commercial materials and a commodity desktop inkjet printer. It realizes ultrathin skin-conformal patches (~1μm) and interactive textiles that capture sEMG, EDA and ECG signals. It further supports fabricating devices with custom levels of thickness and stretchability. We present detailed fabrication explorations on multiple substrate materials, functional inks and skin adhesive materials. Informed from the literature, we also provide design recommendations for each of the modalities. Evaluation results show that the sensor patches achieve a high signal-to-noise ratio. Example applications demonstrate the functionality and versatility of our approach for prototyping a next generation of physiological devices that intimately couple with the human body.

Loading...
Thumbnail Image
Item

Metadata analysis of open educational resources

2021, Tavakoli, Mohammadreza, Elias, Mirette, Kismihók, Gábor, Auer, Sören, Scheffel, Maren

Open Educational Resources (OERs) are openly licensed educational materials that are widely used for learning. Nowadays, many online learning repositories provide millions of OERs. Therefore, it is exceedingly difficult for learners to find the most appropriate OER among these resources. Subsequently, the precise OER metadata is critical for providing high-quality services such as search and recommendation. Moreover, metadata facilitates the process of automatic OER quality control as the continuously increasing number of OERs makes manual quality control extremely difficult. This work uses the metadata of 8,887 OERs to perform an exploratory data analysis on OER metadata. Accordingly, this work proposes metadata-based scoring and prediction models to anticipate the quality of OERs. Based on the results, our analysis demonstrated that OER metadata and OER content qualities are closely related, as we could detect high-quality OERs with an accuracy of 94.6%. Our model was also evaluated on 884 educational videos from Youtube to show its applicability on other educational repositories.

Loading...
Thumbnail Image
Item

Like a Second Skin: Understanding How Epidermal Devices Affect Human Tactile Perception

2019, Nittala, Aditya Shekhar, Kruttwig, Klaus, Lee, Jaeyeon, Bennewitz, Roland, Arzt, Eduard, Steimle, Jürgen, Brewster, Stephen

The emerging class of epidermal devices opens up new opportunities for skin-based sensing, computing, and interaction. Future design of these devices requires an understanding of how skin-worn devices affect the natural tactile perception. In this study, we approach this research challenge by proposing a novel classification system for epidermal devices based on flexural rigidity and by testing advanced adhesive materials, including tattoo paper and thin films of poly (dimethylsiloxane) (PDMS). We report on the results of three psychophysical experiments that investigated the effect of epidermal devices of different rigidity on passive and active tactile perception. We analyzed human tactile sensitivity thresholds, two-point discrimination thresholds, and roughness discrimination abilities on three different body locations (fingertip, hand, forearm). Generally, a correlation was found between device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Surprisingly, thin epidermal devices based on PDMS with a hundred times the rigidity of commonly used tattoo paper resulted in comparable levels of tactile acuity. The material offers the benefit of increased robustness against wear and the option to re-use the device. Based on our findings, we derive design recommendations for epidermal devices that combine tactile perception with device robustness.