Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

High-temperature electromechanical loss in piezoelectric langasite and catangasite crystals

2021, Suhak, Yuriy, Fritze, Holger, Sotnikov, Andrei, Schmidt, Hagen, Johnson, Ward L.

Temperature-dependent acoustic loss Q−1 is studied in partially disordered langasite (LGS, La3Ga5SiO14) and ordered catangasite (CTGS, Ca3TaGa3Si2O14) crystals and compared with previously reported CTGS and langatate (LGT, La3Ga5.5Ta0.5O14) data. Two independent techniques, a contactless tone-burst excitation technique and contacting resonant piezoelectric spectroscopy, are used in this study. Contributions to the measured Q−1(T) are determined through fitting to physics-based functions, and the extracted fit parameters, including the activation energies of the processes, are discussed. It is shown that losses in LGS and CTGS are caused by a superposition of several mechanisms, including intrinsic phonon–phonon loss, point-defect relaxations, and conductivity-related relaxations.

Loading...
Thumbnail Image
Item

Thermally triggered optical tuning of π-conjugated graft copolymers based on reversible Diels–Alder reaction

2016, Ahner, J., Micheel, M., Kötteritzsch, J., Dietzek, B., Hager, M.D.

In order to design a π-conjugated polymer film with tunable optical properties by thermally triggered activation of energy transfer after processing, two monodisperse phenylene ethynylene based oligomers with different optical properties were synthesized and attached to aliphatic polymers as π-conjugated side chains. Subsequently, the exchange of the side chain chromophores between the prepared donor and acceptor graft polymers in the solid state based on a reversible Diels–Alder reaction was studied in detail. The resulting donor–acceptor graft copolymer exhibits intra polymer energy transfer upon excitation of the donor moiety. The photophysical properties of the original and exchanged graft copolymers were investigated by means of absorption and emission spectroscopy. This novel concept opens the possibility for optical tuning of π-conjugated polymer films after processing as well as applications as thermally triggered sensor systems.

Loading...
Thumbnail Image
Item

Semimetal to semiconductor transition in Bi/TiO2 core/shell nanowires

2021, Kockert, M., Mitdank, R., Moon, H., Kim, J., Mogilatenko, A., Moosavi, S.H., Kroener, M., Woias, P., Lee, W., Fischer, S.F.

We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide (Bi/TiO2) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than 5% and the thermal conductivity to less than 25% to 50% of the bulk value at room temperature. On behalf of a compressive strain, Bi/TiO2 core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the TiO2 shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by 10% to 30% compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to |41.3 ± 0.2| meV. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation.

Loading...
Thumbnail Image
Item

Poly(acrylonitrile-co-butadiene) as polymeric crosslinking accelerator for sulphur network formation

2020, Hait, Sakrit, Valentín, Juan López, Jiménez, Antonio González, Ortega, Pilar Bernal, Ghosh, Anik Kumar, Stöckelhuber, Klaus Werner, Wießner, Sven, Heinrich, Gert, Das, Amit

The major controlling factors that determine the various mechanical properties of an elastomer system are type of chemical crosslinking and crosslink density of the polymer network. In this study, a catalytic amount of acrylonitrile butadiene copolymer (NBR) was used as a co-accelerator for the curing of polybutadiene (BR) elastomer. After the addition of this copolymer along with other conventional sulphur ingredients in polybutadiene compounds, a clear and distinct effect on the curing and other physical characteristics was noticed. The crosslinking density of BR was increased, as evidenced by rheometric properties, solid-state NMR and swelling studies. The vulcanization kinetics study revealed a substantial lowering of the activation energy of the sulphur crosslinking process when acrylonitrile butadiene copolymer was used in the formulation. The compounds were also prepared in the presence of carbon black and silica, and it was found that in the carbon black filled system the catalytic effect of the NBR was eminent. The effect was not only reflected in the mechanical performance but also the low-temperature crystallization behavior of BR systems was altered. © 2020 The AuthorsMaterials science; Materials chemistry; Crosslinking accelerator; Sulphur network; Solid state NMR; Curing kinetics; Activation energy; Acrylonitrile butadiene; Polybutadiene; Low-temperature; Crystallization. © 2020 The Authors