Search Results

Now showing 1 - 7 of 7
  • Item
    Universal Tool for Single-Photon Circuits: Quantum Router Design
    (Basel : MDPI, 2020) Sultanov, Aydar; Greenberg, Yakov; Mutsenik, Evgeniya; Pitsun, Dmitry; Il’ichev, Evgeni
    We demonstrate that the non-Hermitian Hamiltonian approach can be used as a universal tool to design and describe a performance of single photon quantum electrodynamical circuits (cQED). As an example of the validity of this method, we calculate a novel six port quantum router, constructed from four qubits and three open waveguides. We have obtained analytical expressions, which describe the transmission and reflection coefficients of a single photon in general form taking into account the spread qubit’s parameters. We show that, due to naturally derived interferences, in situ tuning the probability of photon detection in desired ports
  • Item
    Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing
    (Washington, DC : OSA, 2020) Azkune, Mikel; Frosch, Timea; Arrospide, Eneko; Aldabaldetreku, Gotzon; Bikandi, Iñaki; Zubia, Joseba; Popp, Jürgen; Frosch, Torsten
    This work reports the development and application of two liquid-core microstructured polymer optical fibers (LC-mPOF) with different microstructure sizes. They are used in a fiber-enhanced Raman spectroscopy sensing platform, with the aim of detecting glucose in aqueous solutions in the clinically relevant range for sodium-glucose cotransporter 2 inhibitor therapy. The sensing platform is tested for low-concentration glucose solutions using each LC-mPOF. Results confirm that a significant enhancement of the Raman signal is achieved in comparison to conventional Raman spectroscopy. Additional measurements are carried out to obtain the valid measurement range, the resolution, and the limit of detection, showing that the LC-mPOF with 66-µm-diameter central hollow core has the highest potential for future clinical applications. Finally, preliminary tests successfully demonstrate glucose identification in urine. © 1983-2012 IEEE.
  • Item
    2-LED-μspectrophotometer for rapid on-site detection of pathogens using noble-metal nanoparticle-based colorimetric assays
    (Basel : MDPI, 2020) Reuter, Cornelia; Urban, Matthias; Arnold, Manuel; Stranik, Ondrej; Csáki, Andrea; Fritzsche, Wolfgang
    Novel point-of-care compatible methods such as colorimetric assays have become increasingly important in the field of early pathogen detection. A simple and hand-held prototype device for carrying out DNA-amplification assay based on plasmonic nanoparticles in the colorimetric detection is presented. The low-cost device with two channels (sample and reference) consists of two spectrally different light emitting diodes (LEDs) for detection of the plasmon shift. The color change of the gold-nanoparticle-DNA conjugates caused by a salt-induced aggregation test is examined in particular. A specific and sensitive detection of the waterborne human pathogen Legionella pneumophila is demonstrated. This colorimetric assay, with a simple assay design and simple readout device requirements, can be monitored in real-time on-site. © 2020 by the authors.
  • Item
    Systematic evaluation of particle loss during handling in the percutaneous transluminal angioplasty for eight different drug-coated balloons
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Heinrich, Andreas; Engler, Martin S.; Güttler, Felix V.; Matthäus, Christian; Popp, Jürgen; Teichgräber, Ulf K.-M.
    Paclitaxel drug coated balloons (DCBs) should provide optimal drug transfer exclusively to the target tissue. The aim of this study was to evaluate the particle loss by handling during angioplasty. A robotic arm was developed for systematic and reproducible drug abrasion experiments. The contact force on eight different commercially available DCB types was gradually increased, and high-resolution microscopic images of the deflated and inflated balloons were recorded. Three types of DCBs were classified: no abrasion of the drug in both statuses (deflated and inflated), significant abrasion only in the inflated status, and significant abrasion in both statuses. Quantitative measurements via image processing confirmed the qualitative classification and showed changes of the drug area between 2.25 and 45.73% (13.28 ± 14.29%) in the deflated status, and between 1.66 and 40.41% (21.43 ± 16.48%) in the inflated status. The structures and compositions of the DCBs are different, some are significantly more susceptible to drug loss. Particle loss by handling during angioplasty leads to different paclitaxel doses in the target regions for same DCB types. Susceptibility to involuntary drug loss may cause side effects, such as varying effective paclitaxel doses, which may explain variations in studies regarding the therapeutic outcome.
  • Item
    Giant refractometric sensitivity by combining extreme optical Vernier effect and modal interference
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Gomes, André D.; Kobelke, Jens; Bierlich, Jörg; Dellith, Jan; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
    The optical Vernier effect consists of overlapping responses of a sensing and a reference interferometer with slightly shifted interferometric frequencies. The beating modulation thus generated presents high magnified sensitivity and resolution compared to the sensing interferometer, if the two interferometers are slightly out of tune with each other. However, the outcome of such a condition is a large beating modulation, immeasurable by conventional detection systems due to practical limitations of the usable spectral range. We propose a method to surpass this limitation by using a few-mode sensing interferometer instead of a single-mode one. The overlap response of the different modes produces a measurable envelope, whilst preserving an extremely high magnification factor, an order of magnification higher than current state-of-the-art performances. Furthermore, we demonstrate the application of that method in the development of a giant sensitivity fibre refractometer with a sensitivity of around 500 µm/RIU (refractive index unit) and with a magnification factor over 850.
  • Item
    Genotyping of methicillin resistant Staphylococcus aureus from the United Arab Emirates
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Senok, Abiola; Nassar, Rania; Celiloglu, Handan; Nabi, Anju; Alfaresi, Mubarak; Weber, Stefan; Rizvi, Irfan; Müller, Elke; Reissig, Annett; Gawlik, Darius; Monecke, Stefan; Ehricht, Ralf
    Reports from Arabian Gulf countries have demonstrated emergence of novel methicillin resistant Staphylococcus aureus (MRSA) strains. To address the lack of data from the United Arab Emirates (UAE), genetic characterisation of MRSA identified between December 2017 and August 2019 was conducted using DNA microarray-based assays. The 625 MRSA isolates studied were grouped into 23 clonal complexes (CCs) and assigned to 103 strains. CC5, CC6, CC22 and CC30 represented 54.2% (n/N = 339/625) of isolates with other common CCs being CC1, CC8, CC772, CC361, CC80, CC88. Emergence of CC398 MRSA, CC5-MRSA-IV Sri Lanka Clone and ST5/ST225-MRSA-II, Rhine-Hesse EMRSA/New York-Japan Clone in our setting was detected. Variants of pandemic CC8-MRSA-[IVa + ACME I] (PVL+) USA300 were detected and majority of CC772 strains were CC772-MRSA-V (PVL+), “Bengal- Bay Clone”. Novel MRSA strains identified include CC5-MRSA-V (edinA+), CC5-MRSA-[VT + fusC], CC5-MRSA-IVa (tst1+), CC5-MRSA-[V/VT + cas + fusC + ccrA/B-1], CC8-MRSA-V/VT, CC22-MRSA-[IV + fusC + ccrAA/(C)], CC45-MRSA-[IV + fusC + tir], CC80-MRSA-IVa, CC121-MRSA-V/VT, CC152-MRSA-[V + fusC] (PVL+). Although several strains harboured SCC-borne fusidic acid resistance (fusC) (n = 181), erythromycin/clindamycin resistance (ermC) (n = 132) and gentamicin resistance (aacA-aphD) (n = 179) genes, none harboured vancomycin resistance genes while mupirocin resistance gene mupR (n = 2) and cfr gene (n = 1) were rare. An extensive MRSA repertoire including CCs previously unreported in the region and novel strains which probably arose locally suggest an evolving MRSA landscape. © 2020, The Author(s).
  • Item
    New methodology to process shifted excitation Raman difference spectroscopy data : a case study of pollen classification
    ([London] : Macmillan Publishers Limited, 2020) Korinth, F.; Mondol, A.S.; Stiebing, C.; Schie, I.W.; Krafft, C.; Popp, J.
    Shifted excitation Raman difference spectroscopy (SERDS) is a background correction method for Raman spectroscopy. Here, the difference spectra were directly used as input for SERDS-based classification after an optimization procedure to correct for photobleaching of the autofluorescence. Further processing included a principal component analysis to compensate for the reduced signal to noise ratio of the difference spectra and subsequent classification by linear discriminant analysis. As a case study 6,028 Raman spectra of single pollen originating from plants of eight different genera and four different growth habits were automatically recorded at excitation wavelengths 784 and 786 nm using a high-throughput screening Raman system. Different pollen were distinguished according to their growth habit, i.e. tree versus non-tree with an accuracy of 95.9%. Furthermore, all pollen were separated according to their genus, providing also insight into similarities based on their families. Classification results were compared using spectra reconstructed from the differences and raw spectra after state-of-art baseline correction as input. Similar sensitivities, specificities, accuracies and precisions were found for all spectra with moderately background. Advantages of SERDS are expected in scenarios where Raman spectra are affected by variations due to detector etaloning, ambient light, and high background.