Search Results

Now showing 1 - 2 of 2
  • Item
    Controlling Surface Wettability for Automated In Situ Array Synthesis and Direct Bioscreening
    (Weinheim : Wiley-VCH, 2021) Lin, Weilin; Gandhi, Shanil; Oviedo Lara, Alan Rodrigo; Thomas, Alvin K.; Helbig, Ralf; Zhang, Yixin
    The in situ synthesis of biomolecules on glass surfaces for direct bioscreening can be a powerful tool in the fields of pharmaceutical sciences, biomaterials, and chemical biology. However, it is still challenging to 1) achieve this conventional multistep combinatorial synthesis on glass surfaces with small feature sizes and high yields and 2) develop a surface which is compatible with solid-phase syntheses, as well as the subsequent bioscreening. This work reports an amphiphilic coating of a glass surface on which small droplets of polar aprotic organic solvents can be deposited with an enhanced contact angle and inhibited motion to permit fully automated multiple rounds of the combinatorial synthesis of small-molecule compounds and peptides. This amphiphilic coating can be switched into a hydrophilic network for protein- and cell-based screening. Employing this in situ synthesis method, chemical space can be probed via array technology with unprecedented speed for various applications, such as lead discovery/optimization in medicinal chemistry and biomaterial development.
  • Item
    A Photoclick-Based High-Throughput Screening for the Directed Evolution of Decarboxylase OleT
    (Weinheim : Wiley-VCH, 2021) Markel, Ulrich; Lanvers, Pia; Sauer, Daniel F.; Wittwer, Malte; Dhoke, Gaurao V.; Davari, Mehdi D.; Schiffels, Johannes; Schwaneberg, Ulrich
    Enzymatic oxidative decarboxylation is an up-and-coming reaction yet lacking efficient screening methods for the directed evolution of decarboxylases. Here, we describe a simple photoclick assay for the detection of decarboxylation products and its application in a proof-of-principle directed evolution study on the decarboxylase OleT. The assay was compatible with two frequently used OleT operation modes (directly using hydrogen peroxide as the enzyme's co-substrate or using a reductase partner) and the screening of saturation mutagenesis libraries identified two enzyme variants shifting the enzyme's substrate preference from long chain fatty acids toward styrene derivatives. Overall, this photoclick assay holds promise to speed-up the directed evolution of OleT and other decarboxylases. © 2020 The Authors. Published by Wiley-VCH GmbH