Search Results

Now showing 1 - 10 of 35
  • Item
    Modelling of a miniature microwave driven nitrogen plasma jet and comparison to measurements
    (Bristol : IOP Publ., 2021) Klute, Michael; Kemaneci, Efe; Porteanu, Horia-Eugen; Stefanović, Ilija; Heinrich, Wolfgang; Awakowicz, Peter; Brinkmann, Ralf Peter
    The MMWICP (miniature microwave ICP) is a new plasma source using the induction principle. Recently Klute et al presented a mathematical model for the electromagnetic fields and power balance of the new device. In this work the electromagnetic model is coupled with a global chemistry model for nitrogen, based on the chemical reaction set of Thorsteinsson and Gudmundsson and customized for the geometry of the MMWICP. The combined model delivers a quantitative description for a non-thermal plasma at a pressure of p = 1000 Pa and a gas temperature of Tg = 650–1600 K. Comparison with published experimental data shows a good agreement for the volume averaged plasma parameters at high power, for the spatial distribution of the discharge and for the microwave measurements. Furthermore, the balance of capacitive and inductive coupling in the absorbed power is analyzed. This leads to the interpretation of the discharge regime at an electron density of ne ≈ 6.4 × 1018 m−3 as E/H-hybridmode with an capacitive and inductive component.
  • Item
    Stripe-yzmagnetic order in the triangular-lattice antiferromagnet KCeS2
    (Bristol : IOP Publ., 2021) Kulbakov, Anton A.; Avdoshenko, Stanislav M.; Puente-Orench, Inés; Deeb, Mahmoud; Doerr, Mathias; Schlender, Philipp; Doert, Thomas; Inosov, Dmytro S.
    Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO2, NaYbS2, and NaYbSe2, exhibit no long-range order down to the lowest measured temperatures and therefore serve as putative candidates for the realization of a quantum spin liquid. However, their isostructural Ce-based counterpart KCeS2 exhibits magnetic order below TN = 400 mK, which was so far identified only in thermodynamic measurements. Here we reveal the magnetic structure of this long-range ordered phase using magnetic neutron diffraction. We show that it represents the so-called 'stripe-yz' type of antiferromagnetic order with spins lying approximately in the triangular-lattice planes orthogonal to the nearest-neighbor Ce–Ce bonds. No structural lattice distortions are revealed below TN, indicating that the triangular lattice of Ce3+ ions remains geometrically perfect down to the lowest temperatures. We propose an effective Hamiltonian for KCeS2, based on a fit to the results of ab initio calculations, and demonstrate that its magnetic ground state matches the experimental spin structure.
  • Item
    Magnetocaloric properties of multicomponent Laves phase compounds and their composites
    (Bristol : IOP Publ., 2021) Ćwik, J.; Koshkid’ko, Yu; Nenkov, K.; Kolchugina, N.
    Heat capacity measurements have been performed for multicomponent (Ho0.9Er0.1)1-xGdxCo2 compounds with x = 0.05, 0.1, and 0.15. The isothermal magnetic entropy change, ΔSmag, allowing the estimation of the magnetocaloric effect, was determined based on the heat capacity measurements in magnetic fields up to 2 T. A numerical method, with the magnetic entropy change of individual (Ho0.9Er0.1)1-xGdxCo2 compounds, was used to calculate the optimal molar composition of the constituents and the resulting change of the isothermal magnetic entropy of composite, ΔScomp. The results show that proposed composite can be considered as a refrigerant material in magnetic refrigerators performing an Ericsson cycle in a temperature range of 90-130 K.
  • Item
    Dislocation and indium droplet related emission inhomogeneities in InGaN LEDs
    (Bristol : IOP Publ., 2021) van Deurzen, Len; Gómez Ruiz, Mikel; Lee, Kevin; Turski, Henryk; Bharadwaj, Shyam; Page, Ryan; Protasenko, Vladimir; Xing, Huili (Grace); Lähnemann, Jonas; Jena, Debdeep
    This report classifies emission inhomogeneities that manifest in InGaN quantum well blue light-emitting diodes grown by plasma-assisted molecular beam epitaxy on free-standing GaN substrates. By a combination of spatially resolved electroluminescence and cathodoluminescence measurements, atomic force microscopy, scanning electron microscopy and hot wet potassium hydroxide etching, the identified inhomogeneities are found to fall in four categories. Labeled here as type I through IV, they are distinguishable by their size, density, energy, intensity, radiative and electronic characteristics and chemical etch pits which correlates them with dislocations. Type I exhibits a blueshift of about 120 meV for the InGaN quantum well emission attributed to a perturbation of the active region, which is related to indium droplets that form on the surface in the metal-rich InGaN growth condition. Specifically, we attribute the blueshift to a decreased growth rate of and indium incorporation in the InGaN quantum wells underneath the droplet which is postulated to be the result of reduced incorporated N species due to increased N2 formation. The location of droplets are correlated with mixed type dislocations for type I defects. Types II through IV are due to screw dislocations, edge dislocations, and dislocation bunching, respectively, and form dark spots due to leakage current and nonradiative recombination.
  • Item
    Roadmap on quantum nanotechnologies
    (Bristol : IOP Publ., 2021) Laucht, Arne; Hohls, Frank; Ubbelohde, Niels; Fernando Gonzalez-Zalba, M.; Reilly, David J.; Stobbe, Søren; Schröder, Tim; Scarlino, Pasquale; Koski, Jonne V.; Dzurak, Andrew; Yang, Chih-Hwan; Yoneda, Jun; Kuemmeth, Ferdinand; Bluhm, Hendrik; Pla, Jarryd; Hill, Charles; Salfi, Joe; Oiwa, Akira; Muhonen, Juha T.; Verhagen, Ewold; LaHaye, M D; Kim, Hyun Ho; Tsen, Adam W; Culcer, Dimitrie; Geresdi, Attila; Mol, Jan A.; Mohan, Varun; Jain, Prashant K.; Baugh, Jonathan
    Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.
  • Item
    Charge storage in metal-chalcogenide bilayer junctions
    (Bristol : IOP Publ., 2021) Takagaki, Y.
    We demonstrate that electrical charges are stored in the bilayer junctions of Al and Bi–Cu–S alloys. The junctions exhibit interfacial resistance switching, which is caused by a spontaneous production of high resistivity compounds at the interface and their electrochemical dissolution under a voltage bias. The charge storage results from the redox reactions that are responsible for the resistance switching. In contrast to conventional secondary batteries, the storing capability increases as the temperature is lowered from room temperature to 77 K, where the charges are released in a time scale nearly on the order of hours. The charging and discharging are thereby indicated not to rely on ionic transport. The battery effect is reversible in polarity. Storage characteristics are modified when Cu in the ternary alloy is replaced with Ag or Ni in a similar manner to the way the properties of the interfacial resistance switching are altered.
  • Item
    Shielding Effect on Flux Trapping in Pulsed-Field Magnetizing for Mg-B Bulk Magnet
    (Bristol : IOP Publ., 2021) Oka, T.; Yamanaka, K.; Sudo, K.; Dadiel, L.; Ogawa, J.; Yokoyama, K.; Häßler, W.; Noudem, J.; Berger, K.; Sakai, N.; Miryala, M.; Murakami, M.
    MgB2 superconducting bulk materials are characterized as simple and uniform metallic compounds, and capable of trapping field of non-distorted conical shapes. Although pulsed-field magnetization technique (PFM) is expected to be a cheap and an easy way to activate them, the heat generation due to the magnetic flux motion causes serious degradation of captured fields. The authors precisely estimated the flux trapping property of the bulk samples, found that the flux-shielding effect closely attributed to the sample dimensions. The magnetic field capturing of Ti-5.0wt% sample reached the highest value of 0.76 T. The applied field which reached the centre of the sample surface shifted from 1.0 T to 1.2 T with increasing sample thickness from 3.67 mm to 5.80 mm. This means that the shielding effect was enhanced with increasing the sample thickness. Moreover, Ti-addition affected the frequency of flux jump happenings. The occurrence of flux jumps was suppressed in 5.0wt%Ti-added sample. This means that the heat capacity of the compounds was promoted by Ti addition.
  • Item
    Complex systems approaches for Earth system data analysis
    (Bristol : IOP Publ., 2021) Boers, Niklas; Kurths, Jürgen; Marwan, Norbert
    Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.
  • Item
    Deep decarbonisation of buildings energy services through demand and supply transformations in a 1.5°C scenario
    (Bristol : IOP Publ., 2021-5-12) Levesque, Antoine; Pietzcker, Robert C.; Baumstark, Lavinia; Luderer, Gunnar
    Buildings energy consumption is one of the most important contributors to greenhouse gas (GHG) emissions worldwide, responsible for 23% of energy-related CO2 emissions. Decarbonising the energy demand of buildings will require two types of strategies: first, an overall reduction in energy demand, which could, to some extent, be achieved at negative costs; and second through a reduction of the carbon content of energy via fuel switching and supply-side decarbonisation. This study assesses the contributions of each of these strategies for the decarbonisation of the buildings sector in line with a 1.5°C global warming. We show that in a 1.5°C scenario combining mitigation policies and a reduction of market failures in efficiency markets, 81% of the reductions in buildings emissions are achieved through the reduction of the carbon content of energy, while the remaining 19% are due to efficiency improvements which reduce energy demand by 31%. Without supply-side decarbonisation, efficiency improvements almost entirely suppress the doubling of emissions that would otherwise be expected, but fail to induce an absolute decline in emissions. Our modelling and scenarios show the impact of both climate change mitigation policies and of the alleviation of market failures pervading through energy efficiency markets. The results show that the reduction of the carbon content of energy through fuel switching and supply-side decarbonisation is of paramount importance for the decarbonisation of buildings.
  • Item
    Inventory reporting of livestock emissions: the impact of the IPCC 1996 and 2006 Guidelines
    (Bristol : IOP Publ., 2021-6-22) Amon, Barbara; Çinar, Gültaç; Anderl, Michael; Dragoni, Federico; Kleinberger-Pierer, Magdalena; Hörtenhuber, Stefan
    The livestock sector is a major contributor to agricultural greenhouse gas (GHG) and nitrogen (N) emissions and efforts are being made to reduce these emissions. National emission inventories are the main tool for reporting emissions. They have to be consistent, comparable, complete, accurate and transparent. The quality of emission inventories is affected by the reporting methodology, emission factors and knowledge of individual sources. In this paper, we investigate the effects of moving from the 1996 IPCC Guidelines for National Greenhouse Gas Inventories to the 2006 IPCC Guidelines on the emission estimates from the livestock sector. With Austria as a case study, we estimated the emissions according to the two guidelines, revealing marked changes in emission estimates from different source categories resulting from changes in the applied methodology. Overall estimated GHG emissions from the livestock sector decreased when applying the IPCC 2006 methodology, except for emissions from enteric fermentation. Our study revealed shifts in the relative importance of main emission sources. While the share of CH4 emissions from enteric fermentation and manure management increased, the share of N2O emissions from manure management and soils decreased. The most marked decrease was observed for the share of indirect N2O emissions. Our study reveals a strong relationship between the emission inventory methodology and mitigation options as mitigation measures will only be effective for meeting emission reduction targets if their effectiveness can be demonstrated in the national emission inventories. We include an outlook on the 2019 IPCC Refinement and its potential effects on livestock emissions estimates. Emission inventory reports are a potent tool to show the effect of mitigation measures and the methodology prescribed in inventory guidelines will have a distinct effect on the selection of mitigation measures.