Search Results

Now showing 1 - 4 of 4
  • Item
    Controlled polyhedral sweeping processes: Existence, stability, and optimality conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Henrion, René; Jourani, Abderrahim; Mordukhovich, Boris S.
    This paper is mainly devoted to the study of controlled sweeping processes with polyhedral moving sets in Hilbert spaces. Based on a detailed analysis of truncated Hausdorff distances between moving polyhedra, we derive new existence and uniqueness theorems for sweeping trajectories corresponding to various classes of control functions acting in moving sets. Then we establish quantitative stability results, which provide efficient estimates on the sweeping trajectory dependence on controls and initial values. Our final topic, accomplished in finite-dimensional state spaces, is deriving new necessary optimality and suboptimality conditions for sweeping control systems with endpoint constrains by using constructive discrete approximations.
  • Item
    First-order conditions for the optimal control of learning-informed nonsmooth PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Dong, Guozhi; Hintermüller, Michael; Papafitsoros, Kostas; Völkner, Kathrin
    In this paper we study the optimal control of a class of semilinear elliptic partial differential equations which have nonlinear constituents that are only accessible by data and are approximated by nonsmooth ReLU neural networks. The optimal control problem is studied in detail. In particular, the existence and uniqueness of the state equation are shown, and continuity as well as directional differentiability properties of the corresponding control-to-state map are established. Based on approximation capabilities of the pertinent networks, we address fundamental questions regarding approximating properties of the learning-informed control-to-state map and the solution of the corresponding optimal control problem. Finally, several stationarity conditions are derived based on different notions of generalized differentiability.
  • Item
    Analysis and optimal control theory for a phase field model of Caginalp type with thermal memory
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Colli, Pierluigi; Signori, Andrea; Sprekels, Jürgen
    A nonlinear extension of the Caginalp phase field system is considered that takes thermal memory into account. The resulting model, which is a first-order approximation of a thermodynamically consistent system, is inspired by the theories developed by Green and Naghdi. Two equations, resulting from phase dynamics and the universal balance law for internal energy, are written in terms of the phase variable (representing a non-conserved order parameter) and the so-called thermal displacement, i.e., a primitive with respect to time of temperature. Existence and continuous dependence results are shown for weak and strong solutions to the corresponding initial-boundary value problem. Then, an optimal control problem is investigated for a suitable cost functional, in which two data act as controls, namely, the distributed heat source and the initial temperature. Fréchet differentiability between suitable Banach spaces is shown for the control-to-state operator, and meaningful first-order necessary optimality conditions are derived in terms of variational inequalities involving the adjoint variables. Eventually, characterizations of the optimal controls are given.
  • Item
    Strong stationarity conditions for the optimal control of a Cahn--Hilliard--Navier--Stokes system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hintermüller, Michael; Keil, Tobias
    This paper is concerned with the distributed optimal control of a time-discrete Cahn-Hilliard-Navier-Stokes system with variable densities. It focuses on the double-obstacle potential which yields an optimal control problem for a variational inequality of fourth order and the Navier-Stokes equation. The existence of solutions to the primal system and of optimal controls is established. The Lipschitz continuity of the constraint mapping is derived and used to characterize the directional derivative of the constraint mapping via a system of variational inequalities and partial differential equations. Finally, strong stationarity conditions are presented following an approach from Mignot and Puel.