Search Results

Now showing 1 - 9 of 9
  • Item
    Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines
    ([London] : Nature Publishing Group UK, 2019) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Neumann, Helfried; Spannenberg, Anke; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.
  • Item
    Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts
    ([London] : Nature Publishing Group UK, 2019) Wu, Lipeng; Annibale, Vincent T.; Jiao, Haijun; Brookfield, Adam; Collison, David; Manners, Ian
    Catalytic chemistry that involves the activation and transformation of main group substrates is relatively undeveloped and current examples are generally mediated by expensive transition metal species. Herein, we describe the use of inexpensive and readily available tBuOK as a catalyst for P–P and P–E (E = O, S, or N) bond formation. Catalytic quantities of tBuOK in the presence of imine, azobenzene hydrogen acceptors, or a stoichiometric amount of tBuOK with hydrazobenzene, allow efficient homodehydrocoupling of phosphines under mild conditions (e.g. 25 °C and < 5 min). Further studies demonstrate that the hydrogen acceptors play an intimate mechanistic role. We also show that our tBuOK catalysed methodology is general for the heterodehydrocoupling of phosphines with alcohols, thiols and amines to generate a range of potentially useful products containing P–O, P–S, or P–N bonds.
  • Item
    Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen
    ([London] : Nature Publishing Group UK, 2020) Cabrero-Antonino, Jose R.; Adam, Rosa; Papa, Veronica; Beller, Matthias
    Catalytic hydrogenation of amides is of great interest for chemists working in organic synthesis, as the resulting amines are widely featured in natural products, drugs, agrochemicals, dyes, etc. Compared to traditional reduction of amides using (over)stoichiometric reductants, the direct hydrogenation of amides using molecular hydrogen represents a greener approach. Furthermore, amide hydrogenation is a highly versatile transformation, since not only higher amines (obtained by C–O cleavage), but also lower amines and alcohols, or amino alcohols (obtained by C–N cleavage) can be selectively accessed by fine tuning of reaction conditions. This review describes the most recent advances in the area of amide hydrogenation using H2 exclusively and molecularly defined homogeneous as well as nano-structured heterogeneous catalysts, with a special focus on catalyst development and synthetic applications.
  • Item
    A meta-analysis of catalytic literature data reveals property-performance correlations for the OCM reaction
    ([London] : Nature Publishing Group UK, 2019) Schmack, Roman; Friedrich, Alexandra; Kondratenko, Evgenii V.; Polte, Jörg; Werwatz, Axel; Kraehnert, Ralph
    Decades of catalysis research have created vast amounts of experimental data. Within these data, new insights into property-performance correlations are hidden. However, the incomplete nature and undefined structure of the data has so far prevented comprehensive knowledge extraction. We propose a meta-analysis method that identifies correlations between a catalyst’s physico-chemical properties and its performance in a particular reaction. The method unites literature data with textbook knowledge and statistical tools. Starting from a researcher’s chemical intuition, a hypothesis is formulated and tested against the data for statistical significance. Iterative hypothesis refinement yields simple, robust and interpretable chemical models. The derived insights can guide new fundamental research and the discovery of improved catalysts. We demonstrate and validate the method for the oxidative coupling of methane (OCM). The final model indicates that only well-performing catalysts provide under reaction conditions two independent functionalities, i.e. a thermodynamically stable carbonate and a thermally stable oxide support.
  • Item
    Selective catalytic two-step process for ethylene glycol from carbon monoxide
    ([London] : Nature Publishing Group UK, 2016) Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias
    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C-C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals.
  • Item
    The role of allyl ammonium salts in palladium-catalyzed cascade reactions towards the synthesis of spiro-fused heterocycles
    ([London] : Nature Publishing Group UK, 2020) Ye, Fei; Ge, Yao; Spannenberg, Anke; Neumann, Helfried; Beller, Matthias
    There is a continuous need for designing new and improved synthetic methods aiming at minimizing reaction steps while increasing molecular complexity. In this respect, catalytic, one-pot cascade methodologies constitute an ideal tool for the construction of complex molecules with high chemo-, regio-, and stereoselectivity. Herein, we describe two general and efficient cascade procedures for the synthesis of spiro-fused heterocylces. This transformation combines selective nucleophilic substitution (SN2′), palladium-catalyzed Heck and C–H activation reactions in a cascade manner. The use of allylic ammonium salts and specific Pd catalysts are key to the success of the transformations. The synthetic utility of these methodologies is showcased by the preparation of 48 spiro-fused dihydrobenzofuranes and indolines including a variety of fluorinated derivatives.
  • Item
    Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes
    ([London] : Nature Publishing Group UK, 2016) Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias
    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C-N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions.
  • Item
    Evaluation of combination protocols of the chemotherapeutic agent FX-9 with azacitidine, dichloroacetic acid, doxorubicin or carboplatin on prostate carcinoma cell lines
    (San Francisco, California, US : PLOS, 2021) Weiner, Franziska; Schille, Jan Torben; Hein, Jens Ingo; Wu, Xiao-Feng; Beller, Matthias; Junghanß, Christian; Murua Escobar, Hugo; Nolte, Ingo; Tilaoui, Mounir
    The isoquinolinamine FX-9 is a novel potential chemotherapeutic agent showing antiproliferative effects against hematologic and prostate cancer cell lines such as B- and T-acute lymphoblastic leukemia and prostate cancer (PC) of different species. Interestingly, FX-9 shows no hemolytic activity and low toxicity in benign adherent cells. The detailed FX-9 molecular mode of action is currently not fully understood. But application on neoplastic cells induces pro-apoptotic and antimitotic effects. Canine prostate cancer (cPC) represents a unique spontaneous occurring animal model for human androgen-independent PC. Human androgen-independent PC as well as cPC are currently not satisfactorily treatable with chemotherapeutic protocols. Accordingly, the evaluation of novel agent combinations bears significant potential for identifying novel treatment strategies. In this study, we combined FX-9 with the currently approved therapeutic agents doxorubicin, carboplatin, the demethylating substance azacitidine as well as further potentially antitumorigenic agents such as dichloroacetic acid (DCA) in order to evaluate the respective synergistic potential. The combinations with 1–5 μM FX-9 were evaluated regarding the effect after 72 hours on cell viability, cell count and apoptotic/necrotic cells in two human prostate cancer cell lines (LNCaP, PC-3) and a canine prostate cancer cell line (Adcarc1258) representing androgen-dependent and -independent PC/cPC forms. FX-9 in combination with azacitidine decreases cell viability and increases cell death with positive Bliss values. Furthermore, this decreases the cell count with neutral Bliss values on PC-3. Carboplatin in combination with FX-9 reduces cell viability with a neutral Bliss value and increases cell death on LNCaP with calculated positive Bliss values. DCA or doxorubicin in combination with FX-9 do not show synergistic or additive effects on the cell viability. Based on these results, azacitidine or carboplatin in combination with FX-9 offers synergistic/additive efficacy against prostate adenocarcinoma cell lines in vitro. The beneficial effects of both combinations are worth further investigation.
  • Item
    Cation-cation clusters in ionic liquids: Cooperative hydrogen bonding overcomes like-charge repulsion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Knorr, Anne; Ludwig, Ralf
    Direct spectroscopic evidence for H-bonding between like-charged ions is reported for the ionic liquid, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate. New infrared bands in the OH frequency range appear at low temperatures indicating the formation of H-bonded cation-cation clusters similar to those known for water and alcohols. Supported by DFT calculations, these vibrational bands can be assigned to attractive interaction between the hydroxyl groups of the cations. The repulsive Coulomb interaction is overcome by cooperative hydrogen bonding between ions of like charge. The transition energy from purely cation-anion interacting configurations to those including cation-cation H-bonds is determined to be 3–4 kJmol−1. The experimental findings and DFT calculations strongly support the concept of anti-electrostatic hydrogen bonds (AEHBs) as recently suggested by Weinhold and Klein. The like-charge configurations are kinetically stabilized with decreasing temperatures.