Search Results

Now showing 1 - 10 of 25
Loading...
Thumbnail Image
Item

Design of biomimetic collagen matrices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response

2019, Riedel, Stefanie, Hietschold, Philine, Krömmelbein, Catharina, Kunschmann, Tom, Konieczny, Robert, Knolle, Wolfgang, Mierke, Claudia T., Zink, Mareike, Mayr, Stefan G.

Novel strategies to mimic mammalian extracellular matrix (ECM) in vitro are desirable to study cell behavior, diseases and new agents in drug delivery. Even though collagen represents the major constituent of mammalian ECM, artificial collagen hydrogels with characteristic tissue properties such as network size and stiffness are difficult to design without application of chemicals which might be even cytotoxic. In our study we investigate how high energy electron induced crosslinking can be utilized to precisely tune collagen properties for ECM model systems. Constituting a minimally invasive approach, collagen residues remain intact in the course of high energy electron treatment. Quantification of the 3D pore size of the collagen network as a function of irradiation dose shows an increase in density leading to decreased pore size. Rheological measurements indicate elevated storage and loss moduli correlating with an increase in crosslinking density. In addition, cell tests show well maintained viability of NIH 3T3 cells for irradiated collagen gels indicating excellent cellular acceptance. With this, our investigations demonstrate that electron beam crosslinked collagen matrices have a high potential as precisely tunable ECM-mimetic systems with excellent cytocompatibility.

Loading...
Thumbnail Image
Item

Transparent model concrete with tunable rheology for investigating flow and particle-migration during transport in pipes

2020, Auernhammer, Günter K., Fataei, Shirin, Haustein, Martin A., Patel, Himanshu P., Schwarze, Rüdiger, Secrieru, Egor, Mechtcherine, Viktor

The article describes the adaption and properties of a model concrete for detailed flow studies. To adapt the yield stress and plastic viscosity of the model concrete to the corresponding rheological properties of real concrete, the model concrete is made of a mixture of glass beads and a non-Newtonian fluid. The refractive index of the non-Newtonian fluid is adjusted to the refractive index of the glass beads by the addition of a further constituent. The rheological properties of the model concrete are characterised by measurements in concrete rheometers. Finally, the first exemplary results from experiments with the model concrete are presented, which give incipient impressions of the complex internal dynamics in flowing concrete.

Loading...
Thumbnail Image
Item

Influence of substrate dimensionality on the growth mode of epitaxial 3D-bonded GeTe thin films: From 3D to 2D growth

2019, Hilmi, Isom, Lotnyk, Andriy, Gerlach, Jürgen W., Schumacher, Philipp, Rauschenbach, Bernd

The pseudo-binary line of Sb2Te3-GeTe contains alloys featuring different crystalline characteristics from two-dimensionally (2D-) bonded Sb2Te3 to three-dimensionally (3D-) bonded GeTe. Here, the growth scenario of 3D-bonded GeTe is investigated by depositing epitaxial GeTe thin films on Si(111) and Sb2Te3-buffered Si(111) substrates using pulsed laser deposition (PLD). GeTe thin films were grown in trigonal structure within a temperature window for epitaxial growth of 210–270 °C on unbuffered Si(111) substrates. An unconventional growth onset was characterized by the formation of a thin amorphous GeTe layer. Nonetheless, the as-grown film is found to be crystalline. Furthermore, by employing a 2D-bonded Sb2Te3 thin film as a seeding layer on Si(111), a 2D growth of GeTe is harnessed. The epitaxial window can substantially be extended especially towards lower temperatures down to 145 °C. Additionally, the surface quality is significantly improved. The inspection of the local structure of the epitaxial films reveals the presence of a superposition of twinned domains, which is assumed to be an intrinsic feature of such thin films. This work might open a way for an improvement of an epitaxy of a 3D-bonded material on a highly-mismatched substrate (e.g. Si (111)) by employing a 2D-bonded seeding layer (e.g. Sb2Te3).

Loading...
Thumbnail Image
Item

Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces

2022, Günther, Fabian, Hirsch, Franz, Pilz, Stefan, Wagner, Markus, Gebert, Annett, Kästner, Markus, Zimmermann, Martina

Lattices based on triply periodic minimal surfaces (TPMS) have recently attracted increasing interest, but their additive manufacturing (AM) is fraught with imperfections that compromise their structural integrity. Initial research has addressed the influence of process-induced imperfections in lattices, but so far numerical work for TPMS lattices is insufficient. Therefore, in the present study, the structure–property relationships of TPMS lattices, including their imperfections, are investigated experimentally and numerically. The main focus is on a biomimetic Schoen I-WP network lattice made of laser powder bed fusion (LPBF) processed Ti-42Nb designed for bone tissue engineering (BTE). The lattice is scanned by computed tomography (CT) and its as-built morphology is examined before a modeling procedure for artificial reconstruction is developed. The structure–property relationships are analyzed by experimental and numerical compression tests. An anisotropic elastoplastic material model is parameterized for finite element analyses (FEA). The numerical results indicates that the reconstruction of the as-built morphology decisively improves the prediction accuracy compared to the ideal design. This work highlights the central importance of process-related imperfections for the structure–property relationships of TPMS lattices and proposes a modeling procedure to capture their implications.

Loading...
Thumbnail Image
Item

Influence of annealing on microstructure and mechanical properties of ultrafine-grained Ti45Nb

2019, Völker, B., Maier-Kiener, V., Werbach, K., Müller, T., Pilz, S., Calin, M., Eckert, J., Hohenwarter, A.

Beta-Ti alloys have been intensively investigated in the last years because of their favorable low Young's moduli, biocompatibility and bio-inertness, making these alloys interesting candidates for implant materials. Due to their low mechanical strength, efforts are currently devoted to increasing it. A promising way to improve the strength is to tailor the microstructure using severe plastic deformation (SPD). In this investigation high pressure torsion was used to refine the microstructure of a Ti-45wt.%Nb alloy inducing a grain size of ~50 nm. The main focus of the subsequent investigations was devoted to the thermal stability of the microstructure. Isochronal heat-treatments performed for 30 min in a temperature range up to 500 °C caused an increase of hardness with a peak value at 300 °C before the hardness decreased at higher temperatures. Simultaneously, a distinct temperature-dependent variation of the Young's modulus was also measured. Tensile tests revealed an increase in strength after annealing compared to the SPD-state. Microstructural investigations showed that annealing causes the formation of α-Ti. The findings suggest that the combination of severe plastic deformation with subsequent heat treatment provides a feasible way to improve the mechanical properties of SPD-deformed β-Ti alloys making them suitable for higher strength applications.

Loading...
Thumbnail Image
Item

Organic vapor sensing behavior of polycarbonate/polystyrene/multi-walled carbon nanotube blend composites with different microstructures

2019, Li, Yilong, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte

With the focus on the use as leakage detectors, the vapor sensing behavior of conductive polymer composites (CPCs) based on polycarbonate/polystyrene/multi-walled carbon nanotube (PC/PS/MWCNT) blends with different blend ratios was studied as well as their morphological and electrical properties. In the melt mixed blend composites, the MWCNTs are preferentially localized in PC. At the PC/PS ratio of 70/30 wt%, the composites showed a sea-island structure, while for blends containing 40 wt% or 50 wt% PS co-continuous structures were developed resulting in a reduction in the MWCNT percolation threshold. The saturated vapors of the selected solvents have good interactions to PS but different interactions to PC. At 0.75 wt% MWCNT, sea-island CPCs showed high relative resistance change (Rrel) but poor reversibility towards moderate vapors like ethyl acetate and toluene, while CPCs with co-continuous structure exhibited lower Rrel and better reversibility. All CPCs showed poor reversibility towards vapor of the good solvent dichloromethane due to strong interactions between polymers and vapor. In the vapor of the poor solvent cyclohexane, CPCs with higher PS content showed increased Rrel. After extraction of the PS component by cyclohexane, the sensing response was decreased and the Rrel of the co-continuous blend even reached negative values.

Loading...
Thumbnail Image
Item

Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response

2022, Hariharan, Avinash, Goldberg, Phil, Gustmann, Tobias, Maawad, Emad, Pilz, Stefan, Schell, Frederic, Kunze, Tim, Zwahr, Christoph, Gebert, Annett

Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implants. In this work, we investigate a wide range of LPBF parameter space to optimize the volumetric energy density, surface characteristics and melt track widths to achieve a stable process and part density of greater than 99 %. Further, optimized sample states were achieved via thermal post-processing using standard capability aging, super-transus (900 °C) and sub-transus (660 °C) heat treatment strategies with varying quenching mediums (air, water and ice). The applied heat treatment strategies induce various fractions of α, martensite (α', α'') in combination with the β phase and strongly correlated with the observed enhanced mechanical properties and a relatively low elastic modulus. In summary, our work highlights a practical strategy for optimizing the mechanical and corrosion properties of a LPBF produced near β-type Ti-13Nb-13Zr alloy via careful evaluation of processing and post-processing steps and the interrelation to the corresponding microstructures. Corrosion studies revealed excellent corrosion resistances of the heat-treated LPBF samples comparable to wrought Ti-13Nb-13Zr alloys.

Loading...
Thumbnail Image
Item

Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites

2020, Li, Yilong, Pionteck, Jürgen, Pötschke, Petra, Voit, Brigitte

With the main purpose of being used as vapor leakage detector, the volatile organic compound (VOC) vapor sensing properties of conductive polymer blend composites were studied. Poly(lactic acid)/polystyrene/multi-walled carbon nanotube (PLA/PS/MWCNT) based conductive polymer composites (CPCs) in which the polymer components exhibit different interactions with the vapors, were prepared by melt mixing. CPCs with a blend composition of 50/50 wt% resulted in the finest co-continuous structure and selective MWCNT localization in PLA. Therefore, these composites were selected for sensor tests. Thermal annealing was applied aiming to maintain the blend structure but improving the sensing reversibility of CPC sensors towards high vapor concentrations. Different sensing protocols were applied using acetone (good solvent for PS and PLA) and cyclohexane (good solvent for PS but poor solvent for PLA) vapors. Increasing acetone vapor concentration resulted in increased relative resistance change (Rrel) of CPCs. Saturated cyclohexane vapor resulted in lower response than nearly saturated acetone vapor. The thermal annealing at 150 °C did not change the blend morphology but increased the PLA crystallinity, making the CPC sensors more resistant to vapor stimulation, resulting in lower Rrel but better reversibility after vapor exposure.

Loading...
Thumbnail Image
Item

Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBF

2022, Pilz, Stefan, Gustmann, Tobias, Günther, Fabian, Zimmermann, Martina, Kühn, Uta, Gebert, Annett

The ß-type Ti-42Nb alloy was processed by laser powder bed fusion (LPBF) with an infrared top hat laser configuration aiming to control the Young’s modulus by creating an adapted crystallographic texture. Utilizing a top hat laser, a microstructure with a strong 〈0 0 1〉 texture parallel to the building direction and highly elongated grains was generated. This microstructure results in a strong anisotropy of the Young’s modulus that was modeled based on the single crystal elastic tensor and the experimental texture data. Tensile tests along selected loading directions were conducted to study the mechanical anisotropy and showed a good correlation with the modeled data. A Young’s modulus as low as 44 GPa was measured parallel to the building direction, which corresponds to a significant reduction of over 30% compared to the Young’s modulus of the Gaussian reference samples (67–69 GPa). At the same time a high 0.2% yield strength of 674 MPa was retained. The results reveal the high potential of LPBF processing utilizing a top hat laser configuration to fabricate patient-specific implants with an adapted low Young’s modulus along the main loading direction and a tailored mechanical biofunctionality.

Loading...
Thumbnail Image
Item

Additively manufactured AlSi10Mg lattices – Potential and limits of modelling as-designed structures

2022, Gebhardt, Ulrike, Gustmann, Tobias, Giebeler, Lars, Hirsch, Franz, Hufenbach, Julia Kristin, Kästner, Markus

Additive manufacturing overcomes the restrictions of classical manufacturing methods and enables the production of near-net-shaped, complex geometries. In that context, lattice structures are of high interest due to their superior weight reduction potential. AlSi10Mg is a well-known alloy for additive manufacturing and well suited for such applications due to its high strength to material density ratio. It has been selected in this study for producing bulk material and complex geometries of a strut-based lattice type (rhombic dodecahedron). A detailed characterisation of as-built and heat-treated specimens has been conducted including microstructural analyses, identification of imperfections and rigorous mechanical testing under different load conditions. An isotropic elastic–plastic material model is deduced on the basis of tension test results of bulk material test specimens. Performed experiments under compression, shear, torsion and tension load are compared to their virtual equivalents. With the help of numerical modelling, the overall structural behaviour was simulated using the detailed lattice geometry and was successfully predicted by the presented numerical models. The discussion of the limits of this approach aims to evaluate the potential of the numerical assessment in the modelling of the properties for novel lightweight structures.