Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines

2020, Hahn, Veronika, Mikolasch, Annett, Weitemeyer, Josephine, Petters, Sebastian, Davids, Timo, Lalk, Michael, Lackmann, Jan-Wilm, Schauer, Frieder

The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.

Loading...
Thumbnail Image
Item

Influence of the active screen plasma power during afterglow nitrocarburizing on the surface modification of aisi 316l

2020, Böcker, Jan, Puth, Alexander, Dalke, Anke, Röpcke, Jürgen, Van Helden, Jean-Pierre H., Biermann, Horst

Active screen plasma nitrocarburizing (ASPNC) increases the surface hardness and lifetime of austenitic stainless steel without deteriorating its corrosion resistance. Using an active screen made of carbon opens up new technological possibilities that have not been exploited to date. In this study, the effect of screen power variation without bias application on resulting concentrations of process gas species and surface modification of AISI 316L steel was studied. The concentrations of gas species (e.g., HCN, NH3, CH4, C2 H2) were measured as functions of the active screen power and the feed gas composition at constant temperature using in situ infrared laser absorption spectroscopy. At constant precursor gas composition, the decrease in active screen power led to a decrease in both the concentrations of the detected molecules and the diffusion depths of nitrogen and carbon. Depending on the gas mixture, a threshold of the active screen power was found above which no changes in the expanded austenite layer thickness were measured. The use of a heating independent of the screen power offers an additional parameter for optimizing the ASPNC process in addition to changes in the feed gas composition and the bias power. In this way, an advanced process control can be established. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Singlet-Oxygen-Induced Phospholipase A2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation

2021, Nasri, Zahra, Memari, Seyedali, Wenske, Sebastian, Clemen, Ramona, Martens, Ulrike, Delcea, Mihaela, Bekeschus, Sander, Weltmann, Klaus-Dieter, von Woedtke, Thomas, Wende, Kristian

Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation. © 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Supercritical fluid extraction-supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies†

2021, Hofstetter, Robert K., Schulig, Lukas, Bethmann, Jonas, Grimm, Michael, Sager, Maximilian, Aude, Philipp, KeĂźler, Rebecca, Kim, Simon, Weitschies, Werner, Link, Andreas

Saliva is an attractive sampling matrix for measuring various endogenous and exogeneous substances but requires sample treatment prior to chromatographic analysis. Exploiting supercritical CO2 for both extraction and chromatography simplifies sample preparation, reduces organic solvent consumption, and minimizes exposure to potentially infectious samples, but has not yet been applied to oral fluid. Here, we demonstrate the feasibility and benefits of online supercritical fluid extraction coupled to supercritical fluid chromatography and single-quadrupole mass spectrometry for monitoring the model salivary tracer caffeine. A comparison of 13C- and 32S-labeled internal standards with external standard calibration confirmed the superiority of stable isotope-labeled caffeine over nonanalogous internal standards. As proof of concept, the validated method was applied to saliva from a magnetic resonance imaging study of gastric emptying. After administration of 35 mg caffeine via ice capsule, salivary levels correlated with magnetic resonance imaging data, corroborating caffeine's usefulness as tracer of gastric emptying (R2 = 0.945). In contrast to off-line methods, online quantification required only minute amounts of organic solvents and a single manual operation prior to online bioanalysis of saliva, thus demonstrating the usefulness of CO2-based extraction and separation techniques for potentially infective biomatrices.