Search Results

Now showing 1 - 10 of 75
Loading...
Thumbnail Image
Item

Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

2015, Reichert, Doreen, Friedrichs, Jens, Ritter, Steffi, Käubler, Theresa, Werner, Carsten, Bornhäuser, Martin, Corbeil, Denis

Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.

Loading...
Thumbnail Image
Item

Medical ethics in the Anthropocene: how are €100 billion of German physicians' pension funds invested?

2019, Schulz, Christian M., Ahrend, Klaus-Michael, Schneider, Gerhard, Hohendorf, Gerrit, Schellnhuber, Hans Joachim, Busse, Reinhard

[No abstract available]

Loading...
Thumbnail Image
Item

Correlating the ancient Maya and modern european calendars with high-precision AMS 14C dating

2013, Kennett, D.J., Hajdas, I., Culleton, B.J., Belmecheri, S., Martin, S., Neff, H., Awe, J., Graham, H.V., Freeman, K.H., Newsom, L., Lentz, D.L., Anselmetti, F.S., Robinson, M., Marwan, N., Southon, J., Hodell, D.A., Haug, G.H.

The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial.Wereport a series of high-resolution AMS14C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel betweenAD 658-696. This strongly supports the Goodman-Mart?nez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.

Loading...
Thumbnail Image
Item

High-Sensitivity Rheo-NMR Spectroscopy for Protein Studies

2017, Morimoto, Daichi, Walinda, Erik, Iwakawa, Naoto, Nishizawa, Mayu, Kawata, Yasushi, Yamamoto, Akihiko, Shirakawa, Masahiro, Scheler, Ulrich, Sugase, Kenji

Shear stress can induce structural deformation of proteins, which might result in aggregate formation. Rheo-NMR spectroscopy has the potential to monitor structural changes in proteins under shear stress at the atomic level; however, existing Rheo-NMR methodologies have insufficient sensitivity to probe protein structure and dynamics. Here we present a simple and versatile approach to Rheo-NMR, which maximizes sensitivity by using a spectrometer equipped with a cryogenic probe. As a result, the sensitivity of the instrument ranks highest among the Rheo-NMR spectrometers reported so far. We demonstrate that the newly developed Rheo-NMR instrument can acquire high-quality relaxation data for a protein under shear stress and can trace structural changes in a protein during fibril formation in real time. The described approach will facilitate rheological studies on protein structural deformation, thereby aiding a physical understanding of shear-induced amyloid fibril formation.

Loading...
Thumbnail Image
Item

Projections of temperature-related excess mortality under climate change scenarios

2017, Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A.M., Huber, V., Tong, S., de Sousa Zanotti Stagliorio Coelho, M., Nascimento Saldiva, P.H., Lavigne, E., Matus Correa, P., Valdes Ortega, N., Kan, H., Osorio, S., Kyselý, J., Urban, A., Jaakkola, J.J.K., Ryti, N.R.I., Pascal, M., Goodman, P.G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M., Cesar Cruz, J., Seposo, X., Kim, H., Tobias, A., Iñiguez, C., Forsberg, B., Åström, D.O., Ragettli, M.S., Guo, Y.L., Wu, C.-F., Zanobetti, A., Schwartz, J., Bell, M.L., Dang, T.N., Van, D.D., Heaviside, C., Vardoulakis, S., Hajat, S., Haines, A., Armstrong, B.

Background: Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods: We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings: Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation: This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. Funding: UK Medical Research Council.

Loading...
Thumbnail Image
Item

Cytoskeletal transition in patterned cells correlates with interfacial energy model

2014, Müller, A., Meyer, J., Paumer, T., Pompe, T.

A cell's morphology is intricately regulated by microenvironmental cues and intracellular feedback signals. Besides biochemical factors, cell fate can be influenced by the mechanics and geometry of the surrounding matrix. The latter point was addressed herein, by studying cell adhesion on two-dimensional micropatterns. Endothelial cells were grown on maleic acid copolymer surfaces structured with stripes of fibronectin by microcontact printing. Experiments showed a biphasic behaviour of actin stress fibre spacing in dependence on the stripe width with a critical size of approx. 15 μm. In a concurrent modelling effort, cells on stripes were simulated as droplet-like structures, including variations of interfacial energy, total volume and dimensions of the nucleus. A biphasic behaviour with regard to cell morphology and area was found, triggered by the minimum of interfacial energy, with the phase transition occurring at a critical stripe width close to the critical stripe width found in the cell experiment. The correlation of experiment and simulation suggests a possible mechanism of the cytoskeletal rearrangements based on interfacial energy arguments.

Loading...
Thumbnail Image
Item

Towards dynamical network biomarkers in neuromodulation of episodic migraine

2013, Dahlem, M.A., Rode, S., May, A., Fujiwara, N., Hirata, Y., Aihara, K., Kurths, J.

Computational methods have complemented experimental and clinical neurosciences and led to improvements in our understanding of the nervous systems in health and disease. In parallel, neuromodulation in form of electric and magnetic stimulation is gaining increasing acceptance in chronic and intractable diseases. In this paper, we firstly explore the relevant state of the art in fusion of both developments towards translational computational neuroscience. Then, we propose a strategy to employ the new theoretical concept of dynamical network biomarkers (DNB) in episodic manifestations of chronic disorders. In particular, as a first example, we introduce the use of computational models in migraine and illustrate on the basis of this example the potential of DNB as early-warning signals for neuromodulation in episodic migraine.

Loading...
Thumbnail Image
Item

Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models

2014, Chwalek, K., Tsurkan, M.V., Freudenberg, U., Werner, C.

Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.

Loading...
Thumbnail Image
Item

Farmer typology to understand differentiated climate change adaptation in Himalaya

2019, Shukla, Roopam, Agarwal, Ankit, Gornott, Christoph, Sachdeva, Kamna, Joshi, P.K.

Smallholder farmers’ responses to the climate-induced agricultural changes are not uniform but rather diverse, as response adaptation strategies are embedded in the heterogonous agronomic, social, economic, and institutional conditions. There is an urgent need to understand the diversity within the farming households, identify the main drivers and understand its relationship with household adaptation strategies. Typology construction provides an efficient method to understand farmer diversity by delineating groups with common characteristics. In the present study, based in the Uttarakhand state of Indian Western Himalayas, five farmer types were identified on the basis of resource endowment and agriculture orientation characteristics. Factor analysis followed by sequential agglomerative hierarchial and K-means clustering was use to delineate farmer types. Examination of adaptation strategies across the identified farmer types revealed that mostly contrasting and type-specific bundle of strategies are adopted by farmers to ensure livelihood security. Our findings show that strategies that incurred high investment, such as infrastructural development, are limited to high resource-endowed farmers. In contrast, the low resourced farmers reported being progressively disengaging with farming as a livelihood option. Our results suggest that the proponents of effective adaptation policies in the Himalayan region need to be cognizant of the nuances within the farming communities to capture the diverse and multiple adaptation needs and constraints of the farming households. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia

2016, Yan, Di, Domes, Christian, Domes, Robert, Frosch, Timea, Popp, Jürgen, Pletz, Mathias W., Frosch, Torsten

Fiber enhanced resonance Raman spectroscopy (FERS) is introduced for chemically selective and ultrasensitive analysis of the biomolecules hematin, hemoglobin, biliverdin, and bilirubin. The abilities for analyzing whole intact, oxygenated erythrocytes are proven, demonstrating the potential for the diagnosis of red blood cell related diseases, such as different types of anemia and hemolytic disorders. The optical fiber enables an efficient light-guiding within a miniaturized sample volume of only a few micro-liters and provides a tremendously improved analytical sensitivity (LODs of 0.5 μM for bilirubin and 0.13 μM for biliverdin with proposed improvements down to the pico-molar range). FERS is a less invasive method than the standard ones and could be a new analytical method for monitoring neonatal jaundice, allowing a precise control of the unconjugated serum bilirubin levels, and therefore, providing a better prognosis for newborns. The potential for sensing very low concentrations of the bile pigments may also open up new opportunities for cancer research. The abilities of FERS as a diagnostic tool are explored for the elucidation of jaundice with different etiologies including the rare, not yet well understood diseases manifested in green jaundice. This is demonstrated by quantifying clinically relevant concentrations of bilirubin and biliverdin simultaneously in the micro-molar range: for the case of hyperbilirubinemia due to malignancy, infectious hepatitis, cirrhosis or stenosis of the common bile duct (1 μM biliverdin together with 50 μM bilirubin) and for hyperbiliverdinemia (25 μM biliverdin and 75 μM bilirubin). FERS has high potential as an ultrasensitive analytical technique for a wide range of biomolecules and in various life-science applications.