Search Results

Now showing 1 - 10 of 28
Loading...
Thumbnail Image
Item

Influence of Autapses on Synchronization in Neural Networks With Chemical Synapses

2020, Protachevicz, Paulo R., Iarosz, Kelly C., Caldas, Iberê L., Antonopoulos, Chris G., Batista, Antonio M., Kurths, Jürgen

A great deal of research has been devoted on the investigation of neural dynamics in various network topologies. However, only a few studies have focused on the influence of autapses, synapses from a neuron onto itself via closed loops, on neural synchronization. Here, we build a random network with adaptive exponential integrate-and-fire neurons coupled with chemical synapses, equipped with autapses, to study the effect of the latter on synchronous behavior. We consider time delay in the conductance of the pre-synaptic neuron for excitatory and inhibitory connections. Interestingly, in neural networks consisting of both excitatory and inhibitory neurons, we uncover that synchronous behavior depends on their synapse type. Our results provide evidence on the synchronous and desynchronous activities that emerge in random neural networks with chemical, inhibitory and excitatory synapses where neurons are equipped with autapses. © Copyright © 2020 Protachevicz, Iarosz, Caldas, Antonopoulos, Batista and Kurths.

Loading...
Thumbnail Image
Item

Instantaneous Cardiac Baroreflex Sensitivity: xBRS Method Quantifies Heart Rate Blood Pressure Variability Ratio at Rest and During Slow Breathing

2020, Wessel, Niels, Gapelyuk, Andrej, Weiß, Jonas, Kraemer, Jan F., Schmidt, Martin, Berg, Karsten, Malberg, Hagen, Stepan, Holger, Kurths, Jürgen

Spontaneous baroreflex sensitivity (BRS) is a widely used tool for the quantification of the cardiovascular regulation. Numerous groups use the xBRS method, which calculates the cross-correlation between the systolic beat-to-beat blood pressure and the R-R interval (resampled at 1 Hz) in a 10 s sliding window, with 0–5 s delays for the interval. The delay with the highest correlation is selected and, if significant, the quotient of the standard deviations of the R-R intervals and the systolic blood pressures is recorded as the corresponding xBRS value. In this paper we test the hypothesis that the xBRS method quantifies the causal interactions of spontaneous BRS from non-invasive measurements at rest. We use the term spontaneous BRS in the sense of the sensitivity curve is calculated from non-interventional, i.e., spontaneous, baroreceptor activity. This study includes retrospective analysis of 1828 measurements containing ECG as well as continues blood pressure under resting conditions. Our results show a high correlation between the heart rate – systolic blood pressure variability (HRV/BPV) quotient and the xBRS (r = 0.94, p < 0.001). For a deeper understanding we conducted two surrogate analyses by substituting the systolic blood pressure by its reversed time series. These showed that the xBRS method was not able to quantify causal relationships between the two signals. It was not possible to distinguish between random and baroreflex controlled sequences. It appears xBRS rather determines the HRV/BPV quotient. We conclude that the xBRS method has a potentially large bias in characterizing the capacity of the arterial baroreflex under resting conditions. During slow breathing, estimates for xBRS are significantly increased, which clearly shows that measurements at rest only involve limited baroreflex activity, but does neither challenge, nor show the full range of the arterial baroreflex regulatory capacity. We show that xBRS is exclusively dominated by the heart rate to systolic blood pressure ratio (r = 0.965, p < 0.001). Further investigations should focus on additional autonomous testing procedures such as slow breathing or orthostatic testing to provide a basis for a non-invasive evaluation of baroreflex sensitivity. © Copyright © 2020 Wessel, Gapelyuk, Weiß, Schmidt, Kraemer, Berg, Malberg, Stepan and Kurths.

Loading...
Thumbnail Image
Item

Multiband Wavelet Age Modeling for a ∼293 m (∼600 kyr) Sediment Core From Chew Bahir Basin, Southern Ethiopian Rift

2021, Duesing, Walter, Berner, Nadine, Deino, Alan L., Foerster, Verena, Kraemer, K. Hauke, Marwan, Norbert, Trauth, Martin H.

The use of cyclostratigraphy to reconstruct the timing of deposition of lacustrine deposits requires sophisticated tuning techniques that can accommodate continuous long-term changes in sedimentation rates. However, most tuning methods use stationary filters that are unable to take into account such long-term variations in accumulation rates. To overcome this problem we present herein a new multiband wavelet age modeling (MUBAWA) technique that is particularly suitable for such situations and demonstrate its use on a 293 m composite core from the Chew Bahir basin, southern Ethiopian rift. In contrast to traditional tuning methods, which use a single, defined bandpass filter, the new method uses an adaptive bandpass filter that adapts to changes in continuous spatial frequency evolution paths in a wavelet power spectrum, within which the wavelength varies considerably along the length of the core due to continuous changes in long-term sedimentation rates. We first applied the MUBAWA technique to a synthetic data set before then using it to establish an age model for the approximately 293 m long composite core from the Chew Bahir basin. For this we used the 2nd principal component of color reflectance values from the sediment, which showed distinct cycles with wavelengths of 10–15 and of ∼40 m that were probably a result of the influence of orbital cycles. We used six independent 40Ar/39Ar ages from volcanic ash layers within the core to determine an approximate spatial frequency range for the orbital signal. Our results demonstrate that the new wavelet-based age modeling technique can significantly increase the accuracy of tuned age models.

Loading...
Thumbnail Image
Item

Biodiversity research: Data without theory-theory without data

2015, Rillig, Matthias C., Kiessling, Wolfgang, Borsch, Thomas, Gessler, Arthur, Greenwood, Alex D., Hofer, Heribert, Joshi, Jasmin, Schröder, Boris, Thonicke, Kirsten, Tockner, Klement, Weisshuhn, Karoline, Jeltsch, Florian

[No abstract available]

Loading...
Thumbnail Image
Item

The Economic Impact of Exchanging Breeding Material: Assessing Winter Wheat Production in Germany

2020, Lüttringhaus, Sophia, Gornott, Christoph, Wittkop, Benjamin, Noleppa, Steffen, Lotze-Campen, Hermann

Climate change impacts imply that the stabilization and improvement of agricultural production systems using technological innovations has become vital. Improvements in plant breeding are integral to such innovations. In the context of German crop breeding programs, the economic impact of exchanging genetic material has yet to be determined. To this end, we analyze in this impact assessment the economic effects on German winter wheat production that are attributable to exchanging parental material amongst breeders in the breeding process. This exchange is supported by the breeders’ exemption, which is an integral part of the German plant variety protection legislation. It ensures that breeders can freely use licensed varieties created by other breeders for their own breeding activities and aims to speed up the development of improved varieties. For our analysis, we created a unique data set that combines variety-specific grain yield, adoption, and pedigree information of 133 winter wheat varieties. We determined the parental pedigree of each variety to see if a variety was created by interbreeding varieties that are internal or external to its specific breeder. Our study is the first that analyzes the economic impact of exchanging genetic material in German breeding programs. We found that more than 90 % of the tested varieties were bred with exchanged parental material, whereby the majority had two external parents. Also, these varieties were planted on an 8.5 times larger area than the varieties that were bred with two internal parents. Due to lower adoption, these only contributed 11 % to the overall winter wheat production in Germany, even though they yielded more. We used an economic surplus model to measure the benefits of exchanging parental breeding material on German winter wheat production. This resulted in an overall estimated economic surplus of 19.2 to 22.0 billion EUR from production year 1972 to 2018. This implies tremendous returns to using the breeder’s exemption, which, from an economic perspective, is almost cost-free for the breeder. We conclude that the exchange of breeding material contributes to improving Germany’s agricultural production and fosters the development of climate-resilient production systems and global food security. © Copyright © 2020 Lüttringhaus, Gornott, Wittkop, Noleppa and Lotze-Campen.

Loading...
Thumbnail Image
Item

Understanding Regime Shifts in Social-Ecological Systems Using Data on Direct Ecosystem Service Use

2021, Censkowsky, Philipp, Otto, Ilona M.

This paper takes a new look on transition processes in social-ecological systems, identified based on household use of direct ecosystem services in a case study in KwaZulu-Natal, South Africa. We build on the assumption that high dependence on local ecosystems for basic needs satisfaction corresponds to a “green loop” type of system, with direct feedbacks between environmental degradation and human well-being. Increasing use of distant ecosystems marks a regime shift and with that, the transition to “red loops” in which feedbacks between environmental degradation and human well-being are only indirect. These systems are characterized by a fundamentally different set of sustainability problems as well as distinct human-nature connections. The analysis of a case study in KwaZulu-Natal, South Africa, shows that social-ecological systems identified as green loops in 1993, the average share of households using a characteristic bundle of direct ecosystem services drops consistently (animal production, crop production, natural building materials, freshwater, wood). Conversely, in systems identified as red loops, mixed tendencies occur which underpins non-linearities in changing human-nature relationships. We propose to apply the green to red loop transition model to other geographical contexts with regards to studying the use of local ecosystem services as integral part of transformative change in the Anthropocene.

Loading...
Thumbnail Image
Item

Social innovation in community energy in Europe: A review of the evidence

2019, Hewitt, Richard J., Bradley, Nicholas, Compagnucci, Andrea Baggio, Barlagne, Carla, Ceglarz, Andrzej, Cremades, Roger, McKeen, Margaret, Otto, Ilona M., Slee, Bill

Citizen-driven Renewable Energy (RE) projects of various kinds, known collectively as community energy (CE), have an important part to play in the worldwide transition to cleaner energy systems. On the basis of evidence from 8 European countries, we investigate CE, over approximately the last 50 years (c.1970-2018), through the lens of Social Innovation (SI). We carry out a detailed review of literature around the social dimension of renewable energy; we collect, describe and map CE initiatives from Belgium, France, Germany, Italy, Poland, Spain, Sweden, and the UK; and we unpack the SI concept into 4 operational criteria which we suggest are essential to recognizing SI in CE. These are: (1) Crises and opportunities; (2) the agency of civil society; (3) reconfiguration of social practices, institutions and networks; (4) new ways of working. We identify three main phases of SI in CE. The environmental movements of the 1960s and the "oil shocks" of the 1970s provided the catalyst for a series of innovative societal responses around energy and self-sufficiency. A second wave of SI relates to the mainstreaming of RE and associated government support mechanisms. In this phase, with some important exceptions, successful CE initiatives were mainly confined to those countries where they were already embedded as innovators in the previous phase. The third phase of CE innovation relates to the societal response to the Great Recession that began in 2008 and lasted most of the subsequent decade. CE initiatives formed around this time were also strongly focused around democratization of energy and citizen empowerment in the context of rising energy prices, a weak economy, and a production and supply system dominated by excessively powerful multinational energy firms. CE initiatives today are more diverse than at any time previously, and are likely to continue to act as incubators for pioneering initiatives addressing virtually all aspects of energy. However, large multinational energy firms remain the dominant vehicle for delivery of the energy transition, and the apparent excitement in European policy circles for "community energy" does not extend to democratization of energy or genuine empowerment of citizens. © 2019 Hewitt, Bradley, Baggio Compagnucci, Barlagne, Ceglarz, Cremades, McKeen, Otto and Slee.

Loading...
Thumbnail Image
Item

Influence of Delayed Conductance on Neuronal Synchronization

2020, Protachevicz, Paulo R., Borges, Fernando S., Iarosz, Kelly C., Baptista, Murilo S., Lameu, Ewandson L., Hansen, Matheus, Caldas, Iberê L., Szezech Jr., José D., Batista, Antonio M., Kurths, Jürgen

In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization. © Copyright © 2020 Protachevicz, Borges, Iarosz, Baptista, Lameu, Hansen, Caldas, Szezech, Batista and Kurths.

Loading...
Thumbnail Image
Item

Coupling between leg muscle activation and EEG during normal walking, intentional stops, and freezing of gait in Parkinson's disease

2019, Günther, Moritz, Bartsch, Ronny P., Miron-Shahar, Yael, Hassin-Baer, Sharon, Inzelberg, Rivka, Kurths, Jürgen, Plotnik, Meir, Kantelhardt, Jan W.

In this paper, we apply novel techniques for characterizing leg muscle activation patterns via electromyograms (EMGs) and for relating them to changes in electroencephalogram (EEG) activity during gait experiments. Specifically, we investigate changes of leg-muscle EMG amplitudes and EMG frequencies during walking, intentional stops, and unintended freezing-of-gait (FOG) episodes. FOG is a frequent paroxysmal gait disturbance occurring in many patients suffering from Parkinson's disease (PD). We find that EMG amplitudes and frequencies do not change significantly during FOG episodes with respect to walking, while drastic changes occur during intentional stops. Phase synchronization between EMG signals is most pronounced during walking in controls and reduced in PD patients. By analyzing cross-correlations between changes in EMG patterns and brain-wave amplitudes (from EEGs), we find an increase in EEG-EMG coupling at the beginning of stop and FOG episodes. Our results may help to better understand the enigmatic pathophysiology of FOG, to differentiate between FOG events and other gait disturbances, and ultimately to improve diagnostic procedures for patients suffering from PD. Copyright © 2019 Günther, Bartsch, Miron-Shahar, Hassin-Baer, Inzelberg, Kurths, Plotnik and Kantelhardt.

Loading...
Thumbnail Image
Item

Bilateral Trade Agreements and the Interconnectedness of Global Trade

2018, Maluck, Julian, Glanemann, Nicole, Donner, Reik V.

Over the last decades, bilateral trade agreements (BTAs) have increased considerably in number and economic relevance. Notably, such agreements substantially affect global trade, since the reorganization of flows of goods and services has prominent impacts on the contracting countries' economies, but also on other parties that are (directly or indirectly) engaged in trade with these countries. Here, we empirically study the effect of BTAs on the input-output linkages between the contractual parties' national economic sectors by defining a new measure of Trade Interconnectedness (TI), which describes the relative importance of direct and indirect production linkages between the two countries in the international trade network. By analyzing its time evolution for each pair of trade agreement partners, we demonstrate that while most BTAs are succeeded by an increase in TI between the contractors, there are some notable exceptions. In particular, comparing the trade profiles of China and the United States (US), we find indications that both countries have been pursuing fundamentally different objectives and strategies related to the negotiation of BTAs.