Search Results

Now showing 1 - 10 of 61
  • Item
    Assessment of climate change and associated impact on selected sectors in Poland
    (Warsaw : De Gruyter Open, 2018) Kundzewicz, Zbigniew W.; Piniewski, Mikołaj; Mezghani, Abdelkader; Okruszko, Tomasz; Pińskwar, Iwona; Kardel, Ignacy; Hov, Øystein; Szcześniak, Mateusz; Szwed, Małgorzata; Benestad, Rasmus E.; Marcinkowski, Paweł; Graczyk, Dariusz; Dobler, Andreas; Førland, Eirik J.; O’Keefe, Joanna; Choryński, Adam; Parding, Kajsa M.; Haugen, Jan Erik
    The present paper offers a brief assessment of climate change and associated impact in Poland, based on selected results of the Polish–Norwegian CHASE-PL project. Impacts are examined in selected sectors, such as water resources, natural hazard risk reduction, environment, agriculture and health. Results of change detection in long time series of observed climate and climate impact variables in Poland are presented. Also, projections of climate variability and change are provided for time horizons of 2021–2050 and 2071–2100 for two emission scenarios, RCP4.5 and RCP8.5 in comparison with control period, 1971–2000. Based on climate projections, examination of future impacts on sectors is also carried out. Selected uncertainty issues relevant to observations, understanding and projections are tackled as well.
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.
  • Item
    Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Smith, Steven J.; Chateau, Jean; Dorheim, Kalyn; Drouet, Laurent; Durand-Lasserve, Olivier; Fricko, Oliver; Fujimori, Shinichiro; Hanaoka, Tatsuya; Harmsen, Mathijs; Hilaire, Jérôme; Keramidas, Kimon; Klimont, Zbigniew; Luderer, Gunnar; Moura, Maria Cecilia P.; Riahi, Keywan; Rogelj, Joeri; Sano, Fuminori; van Vuuren, Detlef P.; Wada, Kenichi
    The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.
  • Item
    Increasing risks of apple tree frost damage under climate change
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Pfleiderer, Peter; Menke, Inga; Schleussner, Carl-Friedrich
    Anthropogenic climate change is affecting agriculture and crop production. The responses of horticultural and agricultural systems to changing climatic conditions can be non-linear and at times counter-intuitive. Depending on the characteristics of the system, the actual impact can arise as a result of a combination of climate hazards or compound events. Here, we show that compound events can lead to increased risk of frost damage for apple fruit trees in Germany in a 2 °C warmer world of up to 10% relative to present day. Although the absolute number of frost days is declining, warmer winters also lead to earlier blossom of fruit trees, which in turn can lead to regionally dependent increased risks of the occurrence of frost days after apple blossom. In southern Germany, warmer winters may also lead to an increase in years in which apple yield is negatively affected by a lack of sufficient amount of cold days to trigger the seasonal response of the trees. Our results show how cropping system responses to seasonal climate can lead to unexpected effects of increased risk of frost damage as a result of warmer winters. An improved understanding of ecosystem responses to changes in climate signals is important to fully assess the impacts of climate change. © 2019, The Author(s).
  • Item
    The challenge to detect and attribute effects of climate change on human and natural systems
    (Dordrecht [u.a.] : Springer, 2013) Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, W.; Lobell, D.; Molau, U.; Solow, A.; Tibig, L.; Yohe, G.
    Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.
  • Item
    Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios
    (Dordrecht [u.a.] : Springer, 2018) Vicedo-Cabrera, Ana Maria; Guo, Yuming; Sera, Francesco; Huber, Veronika; Schleussner, Carl-Friedrich; Mitchell, Dann; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J. K.; Ryti, Niilo R. I.; Pascal, Mathilde; Goodman, Patrick G.; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S.; Röösli, Martin; Guo, Yue Leon; Wu, Chang-fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Dang, Tran Ngoc; Do Van, Dung; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben; Ebi, Kristie L.; Gasparrini, Antonio
    The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to “hold warming well below 2 °C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 °C”. The 1.5 °C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 °C) and more extreme GMT increases (3 and 4 °C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 °C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 °C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.
  • Item
    How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Krysanova, Valentina; Zaherpour, Jamal; Didovets, Iulii; Gosling, Simon N.; Gerten, Dieter; Hanasaki, Naota; Müller Schmied, Hannes; Pokhrel, Yadu; Satoh, Yusuke; Tang, Qiuhong; Wada, Yoshihide
    Importance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections. © 2020, The Author(s).
  • Item
    A new scenario framework for climate change research: The concept of shared socioeconomic pathways
    (Dordrecht [u.a.] : Springer, 2014) O'Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P.
    The new scenario framework for climate change research envisions combining pathways of future radiative forcing and their associated climate changes with alternative pathways of socioeconomic development in order to carry out research on climate change impacts, adaptation, and mitigation. Here we propose a conceptual framework for how to define and develop a set of Shared Socioeconomic Pathways (SSPs) for use within the scenario framework. We define SSPs as reference pathways describing plausible alternative trends in the evolution of society and ecosystems over a century timescale, in the absence of climate change or climate policies. We introduce the concept of a space of challenges to adaptation and to mitigation that should be spanned by the SSPs, and discuss how particular trends in social, economic, and environmental development could be combined to produce such outcomes. A comparison to the narratives from the scenarios developed in the Special Report on Emissions Scenarios (SRES) illustrates how a starting point for developing SSPs can be defined. We suggest initial development of a set of basic SSPs that could then be extended to meet more specific purposes, and envision a process of application of basic and extended SSPs that would be iterative and potentially lead to modification of the original SSPs themselves.
  • Item
    The impact of climate change and variability on the generation of electrical power
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Koch, H.; Vögele, S.; Hattermann, F.F.; Huang, S.
  • Item
    Uncertainty of biomass contributions from agriculture and forestry to renewable energy resources under climate change
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2015) Gutsch, M.; Lasch-Born, P.; Lüttger, A.B.; Suckow, F.; Murawski, A.; Pilz, T.