Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

Multiscale Spatiotemporal Analysis of Extreme Events in the Gomati River Basin, India

2021, Kalyan, AVS, Ghose, Dillip Kumar, Thalagapu, Rahul, Guntu, Ravi Kumar, Agarwal, Ankit, Kurths, Jürgen, Rathinasamy, Maheswaran

Accelerating climate change is causing considerable changes in extreme events, leading to immense socioeconomic loss of life and property. In this study, we investigate the characteristics of extreme climate events at a regional scale to ‐understand these events’ propagation in the near fu-ture. We have considered sixteen extreme climate indices defined by the World Meteorological Or-ganization’s Expert Team on Climate Change Detection and Indices from a long‐term dataset (1951– 2018) of 53 locations in Gomati River Basin, North India. We computed the present and future spatial variation of theses indices using the Sen’s slope estimator and Hurst exponent analysis. The periodicities and non‐stationary features were estimated using the continuous wavelet transform. Bivariate copulas were fitted to estimate the joint probabilities and return periods for certain com-binations of indices. The study results show different variation in the patterns of the extreme climate indices: D95P, R95TOT, RX5D, and RX showed negative trends for all stations over the basin. The number of dry days (DD) showed positive trends over the basin at 36 stations out of those 17 stations are statistically significant. A sustainable decreasing trend is observed for D95P at all stations, indi-cating a reduction in precipitation in the future. DD exhibits a sustainable decreasing trend at almost all the stations over the basin barring a few exceptions highlight that the basin is turning drier. The wavelet power spectrum for D95P showed significant power distributed across the 2–16‐year bands, and the two‐year period was dominant in the global power spectrum around 1970–1990. One interest-ing finding is that a dominant two‐year period in D95P has changed to the four years after 1984 and remains in the past two decades. The joint return period’s resulting values are more significant than values resulting from univariate analysis (R95TOT with 44% and RTWD of 1450 mm). The difference in values highlights that ignoring the mutual dependence can lead to an underestimation of extremes. © 2021 by the author. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Office Indoor PM and BC Level in Lithuania: The Role of a Long-Range Smoke Transport Event

2021, Pauraite, Julija, Mainelis, Gediminas, Kecorius, Simonas, Minderytė, Agnė, Dudoitis, Vadimas, Garbarienė, Inga, Plauškaitė, Kristina, Ovadnevaite, Jurgita, Byčenkienė, Steigvilė

While the impacts of climate change on wildfires and resulting air pollution levels have been observed, little is known about how indoor air filtering systems are performing under intensive smoke conditions. For this aim, particle number size distribution and concentration in a size range 0.5–18 μm and equivalent black carbon (eBC) mass concentration were measured in a modern office with a mechanical ventilation system. Measurements took place from 30 September to 6 October 2020 in the Center for Physical Sciences and Technology (FTMC) campus located in the urban background environment in Lithuania. During the measurement campaign, an intensive pollution episode, related to long-range transport wildfire smoke, was observed. The results indicated that the smoke event increased both indoor and outdoor eBC mass concentrations twice. Filters were non-selective for different eBC sources (biomass burning versus traffic) or chemical composition of carbonaceous aerosol particles (eBC versus brown carbon (BrC)). Air filtering efficiency was found to be highly dependent on particle size. During the smoke event the highest particle number concentration was observed at 2.1 μm and 1.0 μm size particles in outdoor and indoor air, respectively. Differences of indoor to outdoor ratio between event and non-event days were not significant. Because of lower removal rate for small particles, eBC had higher contribution to total PM2.5 mass concentration in indoor air than in outdoor air. The results gained are crucial for decision-making bodies in order to implement higher-quality air-filtering systems in office buildings and, as a result, minimize potential health impacts. © 2021 by the authors.

Loading...
Thumbnail Image
Item

Transport of mineral dust and its impact on climate

2018, Schepanski, Kerstin

Mineral dust plays a pivotal role in the Earth’s system. Dust modulates the global energy budget directly via its interactions with radiation and indirectly via its influence on cloud and precipitation formation processes. Dust is a micro-nutrient and fertilizer for ecosystems due to its mineralogical composition and thus impacts on the global carbon cycle. Hence, dust aerosol is an essential part of weather and climate. Dust suspended in the air is determined by the atmospheric dust cycle: Dust sources and emission processes define the amount of dust entrained into the atmosphere. Atmospheric mixing and circulation carry plumes of dust to remote places. Ultimately, dust particles are removed from the atmosphere by deposition processes such as gravitational settling and rain wash out. During its residence time, dust interacts with and thus modulates the atmosphere resulting into changes such as in surface temperature, wind, clouds, and precipitation rates. There are still uncertainties regarding individual dust interactions and their relevance. Dust modulates key processes that are inevitably influencing the Earth energy budget. Dust transport allows for these interactions and at the same time, the intermittency of dust transport introduces additional fluctuations into a complex and challenging system.

Loading...
Thumbnail Image
Item

Real World Vehicle Emission Factors for Black Carbon Derived from Longterm In-Situ Measurements and Inverse Modelling

2021, Wiesner, Anne, Pfeifer, Sascha, Merkel, Maik, Tuch, Thomas, Weinhold, Kay, Wiedensohler, Alfred

Black carbon (BC) is one of the most harmful substances within traffic emissions, contributing considerably to urban pollution. Nevertheless, it is not explicitly regulated and the official laboratory derived emission factors are barely consistent with real world emissions. However, realistic emission factors (EFs) are crucial for emission, exposure, and climate modelling. A unique dataset of 10 years (2009–2018) of roadside and background measurements of equivalent black carbon (eBC) concentration made it possible to estimate real world traffic EFs and observe their change over time. The pollutant dispersion was modelled using the Operational Street Pollution Model (OSPM). The EFs for eBC are derived for this specific measurement site in a narrow but densely trafficked street canyon in Leipzig, Germany. The local conditions and fleet composition can be considered as typical for an inner-city traffic scenario in a Western European city. The fleet is composed of 22% diesel and 77% petrol cars in the passenger car segment, with an unknown proportion of direct injection engines. For the mixed fleet the eBC EF was found to be 48 mg km−1 in the long-term average. Accelerated by the introduction of a low emission zone, the EFs decreased over the available time period from around 70 mg km−1 to 30 – 40 mg km−1 . Segregation into light (<3.5 t) and heavy (>3.5 t) vehicles resulted in slightly lower estimates for the light vehicles than for the mixed fleet, and one order of magnitude higher values for the heavy vehicles. The found values are considerably higher than comparable emission standards for particulate matter and even the calculations of the Handbook Emission Factors for Road Transport (HBEFA), which is often used as emission model input. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Atmospheric Dynamics and Numerical Simulations of Six Frontal Dust Storms in the Middle East Region

2021, Hamzeh, Nasim Hossein, Karami, Sara, Kaskaoutis, Dimitris G., Tegen, Ina, Moradi, Mohamad, Opp, Christian

This study analyzes six frontal dust storms in the Middle East during the cold period (October–March), aiming to examine the atmospheric circulation patterns and force dynamics that triggered the fronts and the associated (pre-or post-frontal) dust storms. Cold troughs mostly located over Turkey, Syria and north Iraq played a major role in the front propagation at the surface, while cyclonic conditions and strong winds facilitated the dust storms. The presence of an upper-atmosphere (300 hPa) sub-tropical jet stream traversing from Egypt to Iran constitutes also a dynamic force accompanying the frontal dust storms. Moderate-Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations are used to monitor the spatial and vertical extent of the dust storms, while model (Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), Copernicus Atmospheric Monitoring Service (CAMS), Regional Climate Model-4 (RegCM4)) simulations are also analyzed. The WRF-Chem outputs were in better agreement with the MODIS observations compared to those of CAMS and RegCM4. The fronts were identified by WRF-Chem simulations via gradients in the potential temperature and sudden changes of wind direction in vertical cross-sections. Overall, the uncertainties in the simulations and the remarkable differences between the model outputs indicate that modelling of dust storms in the Middle East is really challenging due to the complex terrain, incorrect representation of the dust sources and soil/surface characteristics, and uncertainties in simulating the wind speed/direction and meteorological dynamics. Given the potential threat by dust storms, more attention should be directed to the dust model development in this region. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Biosignatures in subsurface filamentous fabrics (SFF) from the Deccan Volcanic Province, India

2020, Götze, Jens, Hofmann, Beda, Machałowski, Tomasz, Tsurkan, Mikhail V., Jesionowski, Teofil, Ehrlich, Hermann, Kleeberg, Reinhard, Ottens, Berthold

The morphology, chemical, and mineralogical composition of subsurface filamentous fabrics (SFF) from the Deccan Volcanic Province (DVP) were investigated to determine the origin of these spectacular aggregates. SFF occur in a wide variety of morphologies ranging from pseudo-stalactites to irregular fabrics and are classified as SFFIr (irregular) or SFFMa (matted). The SFF samples exhibit a thread-like (or filament-like) center from which mineral precipitation starts to form the final macroscopic morphologies. Detailed investigations revealed organic material (fungal chitin) in the innermost filamentous core, which may have acted as an initial nucleus for the mineralization processes. The morphometric characteristics of certain filamentous fabrics are very similar to those of microbial filaments and the fabrics formed from them but are clearly distinct from similar types of non-biological precipitates (fibrous minerals, speleothems, and “chemical gardens”). These features indicate that the filamentous cores might be products of microbial communities that were active in the basaltic cavities. The SFF cross-sections display similar concentric layers of the mineral succession and reach thicknesses of several centimeters with spectacular lengths up to 100 cm and constant diameters. The typical mineralization sequence points to temporal variation in the chemical composition of the mineralizing fluids from Fe(Mg)-rich (Fe-oxides/-hydroxides, Fe-rich sheet silicates such as celadonite and di-/tri-smectite) to Ca-dominated (Ca-rich zeolites) and finally pure SiO2 (opal-CT, chalcedony, and macro-crystalline quartz). Assuming biological activity at least during the early mineralization processes, circumneutral pH conditions and maximum temperatures of 100–120 °C were supposed. The formation of filamentous cores including Fe-bearing phyllosilicates probably occurred near the surface after cooling of the lava, where the elements necessary for mineral formation (i.e., Si, Mg, Al, Fe) were released during alteration of the volcanic host rocks by percolating fluids. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Implications of Winter NAO Flavors on Present and Future European Climate

2019, Rousi, Efi, Rust, Henning W., Ulbrich, Uwe, Anagnostopoulou, Christina

The North Atlantic Oscillation (NAO), a basic variability mode in the Northern Hemisphere, undergoes changes in its temporal and spatial characteristics, with significant implications on European climate. In this paper, different NAO flavors are distinguished for winter in simulations of a Coupled Atmosphere-Ocean GCM, using Self-Organizing Maps, a topology preserving clustering algorithm. These flavors refer to various sub-forms of the NAO pattern, reflecting the range of positions occupied by its action centers, the Icelandic Low and the Azores High. After having defined the NAO flavors, composites of winter temperature and precipitation over Europe are created for each one of them. The results reveal significant differences between NAO flavors in terms of their effects on the European climate. Generally, the eastwardly shifted NAO patterns induce a stronger than average influence on European temperatures. In contrast, the effects of NAO flavors on European precipitation anomalies are less coherent, with various areas responding differently. These results confirm that not only the temporal, but also the spatial variability of NAO is important in regulating European climate. © 2020 by the authors.

Loading...
Thumbnail Image
Item

Can Green Plants Mitigate Ammonia Concentration in Piglet Barns?

2021, Menardo, Simona, Berg, Werner, Grüneberg, Heiner, Jakob, Martina

For animal welfare and for farmers’ health, the concentration of ammonia (NH3 ) in animal houses should be as low as possible. Plants can remove various atmospheric contaminants through the leaf stomata. This study examined the effect of ornamental plants installed inside a piglet barn on the NH3 concentration in the air. Gas measurements of the air in the ‘greened’ compartment (P) and a control compartment (CTR) took place over two measuring periods (summer–autumn and winter). Differences between the NH3 emissions were calculated based on the ventilation rates according to the CO2 balance. Fairly low mean NH3 concentrations between 2 and 4 ppm were measured. The NH3 emissions were about 20% lower (p < 0.01) in P than in CTR, in summer–autumn and in winter period. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Loading...
Thumbnail Image
Item

Synthesis of hydroxy-sodalite/cancrinite zeolites from calcite-bearing kaolin for the removal of heavy metal ions in aqueous media

2019, Esaifan, Muayad, Warr, Laurence N., Gratho, Georg, Meyer, Tammo, Schafmeister, Maria-Theresia, Kruth, Angela, Testrich, Holger

A hydroxy-sodalite/cancrinite zeolite composite was synthesized from low-grade calcite-bearing kaolin by hydrothermal alkali-activation method at 160 °C for 6 h. The effect of calcite addition on the formation of the hydroxy-sodalite/cancrinite composite was investigated using artificial mixtures. The chemical composition and crystal morphology of the synthesized zeolite composite were characterized by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy, and N2 adsorption/desorption analyses. The average specific surface area is around 17–20 m2·g−1, whereas the average pore size lies in the mesoporous range (19–21 nm). The synthesized zeolite composite was used as an adsorbent for the removal of heavy metals in aqueous solutions. Batch experiments were employed to study the influence of adsorbent dosage on heavy metal removal efficiency. Results demonstrate the effective removal of significant quantities of Cu, Pb, Ni, and Zn from aqueous media. A comparative study of synthesized hydroxy-sodalite and hydroxy-sodalite/cancrinite composites revealed the latter was 16–24% more efficient at removing heavy metals from water. The order of metal uptake efficiency for these zeolites was determined to be Pb > Cu > Zn > Ni. These results indicate that zeolite composites synthesized from natural calcite-bearing kaolin materials could represent effective and low-cost adsorbents for heavy metal removal using water treatment devices in regions of water shortage.

Loading...
Thumbnail Image
Item

Impacts of Climate Change on theWater Resources of the Kunduz River Basin, Afghanistan

2020, Akhundzadah, Noor Ahmad, Soltani, Salim, Aich, Valentin

The Kunduz River is one of the main tributaries of the Amu Darya Basin in North Afghanistan. Many communities live in the Kunduz River Basin (KRB), and its water resources have been the basis of their livelihoods for many generations. This study investigates climate change impacts on the KRB catchment. Rare station data are, for the first time, used to analyze systematic trends in temperature, precipitation, and river discharge over the past few decades, while using Mann-Kendall and Theil-Sen trend statistics. The trends show that the hydrology of the basin changed significantly over the last decades. A comparison of landcover data of the river basin from 1992 and 2019 shows significant changes that have additional impact on the basin hydrology, which are used to interpret the trend analysis. There is considerable uncertainty due to the data scarcity and gaps in the data, but all results indicate a strong tendency towards drier conditions. An extreme warming trend, partly above 2 °C since the 1960s in combination with a dramatic precipitation decrease by more than -30% lead to a strong decrease in river discharge. The increasing glacier melt compensates the decreases and leads to an increase in runoff only in the highland parts of the upper catchment. The reduction of water availability and the additional stress on the land leads to a strong increase of barren land and a reduction of vegetation cover. The detected trends and changes in the basin hydrology demand an active management of the already scarce water resources in order to sustain water supply for agriculture and ecosystems in the KRB. © 2020 by the authors.