Search Results

Now showing 1 - 6 of 6
  • Item
    Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry
    (Katlenburg-Lindau : Copernicus, 2016) Daellenbach, K.R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J.G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A.S.H.
    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.
  • Item
    Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
    (Katlenburg-Lindau : EGU, 2020) Allen, Robert J.; Turnock, Steven; Nabat, Pierre; Neubauer, David; Lohmann, Ulrike; Olivié, Dirk; Oshima, Naga; Michou, Martine; Wu, Tongwen; Zhang, Jie; Takemura, Toshihiko; Schulz, Michael; Tsigaridis, Kostas; Bauer, Susanne E.; Emmons, Louisa; Horowitz, Larry; Naik, Vaishali; van Noije, Twan; Bergman, Tommi; Lamarque, Jean-Francois; Zanis, Prodromos; Tegen, Ina; Westervelt, Daniel M.; Le Sager, Philippe; Good, Peter; Shim, Sungbo; O’Connor, Fiona; Akritidis, Dimitris; Georgoulias, Aristeidis K.; Deushi, Makoto; Sentman, Lori T.; John, Jasmin G.; Fujimori, Shinichiro; Collins, William J.
    It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015-2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry-climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with weak (SSP3-7.0) versus strong (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2:5) and ozone (O3) decrease by 2:20:32 ugm3 and 4:60:88 ppb, respectively (changes quoted here are for the entire 2015-2055 time period; uncertainty represents the 95% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0:250:12K and 0:030:012mmd1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0:660:20K and 0:030:02mmd1), south Asia (0:470:16K and 0:170:09mmd1), and east Asia (0:460:20K and 0:150:06mmd1). Relatively large warming and wetting of the Arctic also occur at 0:590:36K and 0:040:02mmd1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Organic aerosol source apportionment by offline-AMS over a full year in Marseille
    (Katlenburg-Lindau : EGU, 2017) Bozzetti, Carlo; El Haddad, Imad; Salameh, Dalia; Daellenbach, Kaspar Rudolf; Fermo, Paola; Gonzalez, Raquel; Minguillón, María Cruz; Iinuma, Yoshiteru; Poulain, Laurent; Elser, Miriam; Müller, Emanuel; Slowik, Jay Gates; Jaffrezo, Jean-Luc; Baltensperger, Urs; Marchand, Nicolas; Prévôt, André Stephan Henry
    We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France), which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). In total 216 PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) filter samples were collected over 1 year from August 2011 to July 2012. These filters were used to create 54 composite samples which were analyzed by offline-AMS. The same samples were also analyzed for major water-soluble ions, metals, elemental and organic carbon (EC/OC), and organic markers, including n-alkanes, hopanes, polycyclic aromatic hydrocarbons (PAHs), lignin and cellulose pyrolysis products, and nitrocatechols. The application of positive matrix factorization (PMF) to the water-soluble AMS spectra enabled the extraction of five factors, related to hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), oxygenated OA (OOA), and an industry-related OA (INDOA). Seasonal trends and relative contributions of OA sources were compared with the source apportionment of OA spectra collected from the AMS field deployment at the same station but in different years and for shorter monitoring periods (February 2011 and July 2008). Online- and offline-AMS source apportionment revealed comparable seasonal contribution of the different OA sources. Results revealed that BBOA was the dominant source during winter, representing on average 48 % of the OA, while during summer the main OA component was OOA (63 % of OA mass on average). HOA related to traffic emissions contributed on a yearly average 17 % to the OA mass, while COA was a minor source contributing 4 %. The contribution of INDOA was enhanced during winter (17 % during winter and 11 % during summer), consistent with an increased contribution from light alkanes, light PAHs (fluoranthene, pyrene, phenanthrene), and selenium, which is commonly considered as a unique coal combustion and coke production marker. Online- and offline-AMS source apportionments revealed evolving levoglucosan : BBOA ratios, which were higher during late autumn and March. A similar seasonality was observed in the ratios of cellulose combustion markers to lignin combustion markers, highlighting the contribution from cellulose-rich biomass combustion, possibly related to agricultural activities.
  • Item
    The impact of biomass burning and aqueous-phase processing on air quality: A multi-year source apportionment study in the Po Valley, Italy
    (Katlenburg-Lindau : EGU, 2020) Paglione, Marco; Gilardoni, Stefania; Rinaldi, Matteo; Decesari, Stefano; Zanca, Nicola; Sandrini, Silvia; Giulianelli, Lara; Bacco, Dimitri; Ferrari, Silvia; Poluzzi, Vanes; Scotto, Fabiana; Trentini, Arianna; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Canonaco, Francesco; Prévôt, André S.H.; Massoli, Paola; Carbone, Claudio; Facchini, Maria Cristina; Fuzzi, Sandro
    The Po Valley (Italy) is a well-known air quality hotspot characterized by particulate matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of Emilia-Romagna regional project "Supersito", the southern Po Valley submicron aerosol chemical composition was characterized by means of high-resolution aerosol mass spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over 4 years (from 2011 to 2014) at two different sites (Bologna, BO, urban background, and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for averages of 45 ± 8 % (ranging from 33 % to 58 %) and 46 ± 7 % (ranging from 36 % to 50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and rural sites, respectively. Primary organic aerosol (POA) comprises biomass burning (23±13 % of OA) and fossil fuel (12±7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban / rural concentration ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 % to 38 % of the total OA mass. Secondary organic aerosol (SOA) contributes to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at the urban and rural sites, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning aging products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14 %-44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. © 2020 Author(s).
  • Item
    EURODELTA III exercise: An evaluation of air quality models’ capacity to reproduce the carbonaceous aerosol
    (Amsterdam : Elsevier, 2019) Mircea, Mihaela; Bessagnet, Bertrand; D'Isidoro, Massimo; Pirovano, Guido; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Tsyro, Svetlana; Manders, Astrid; Bieser, Johannes; Stern, Rainer; Vivanco, Marta García; Cuvelier, Cornelius; Aas, Wenche; Prévôt, André S.H.; Aulinger, Armin; Briganti, Gino; Calori, Giuseppe; Cappelletti, Andrea; Colette, Augustin; Couvidat, Florian; Fagerli, Hilde; Finardi, Sandro; Kranenburg, Richard; Rouïl, Laurence; Silibello, Camillo; Spindler, Gerald; Poulain, Laurent; Herrmann, Hartmut; Jimenez, Jose L.; Day, Douglas A.; Tiitta, Petri; Carbone, Samara
    The carbonaceous aerosol accounts for an important part of total aerosol mass, affects human health and climate through its effects on physical and chemical properties of the aerosol, yet the understanding of its atmospheric sources and sinks is still incomplete. This study shows the state-of-the-art in modelling carbonaceous aerosol over Europe by comparing simulations performed with seven chemical transport models (CTMs) currently in air quality assessments in Europe: CAMx, CHIMERE, CMAQ, EMEP/MSC-W, LOTOS-EUROS, MINNI and RCGC. The simulations were carried out in the framework of the EURODELTA III modelling exercise and were evaluated against field measurements from intensive campaigns of European Monitoring and Evaluation Programme (EMEP) and the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Model simulations were performed over the same domain, using as much as possible the same input data and covering four seasons: summer (1–30 June 2006), winter (8 January – 4 February 2007), autumn (17 September- 15 October 2008) and spring (25 February - 26 March 2009). The analyses of models’ performances in prediction of elemental carbon (EC) for the four seasons and organic aerosol components (OA) for the last two seasons show that all models generally underestimate the measured concentrations. The maximum underestimation of EC is about 60% and up to about 80% for total organic matter (TOM). The underestimation of TOM outside of highly polluted area is a consequence of an underestimation of secondary organic aerosol (SOA), in particular of its main contributor: biogenic secondary aerosol (BSOA). This result is independent on the SOA modelling approach used and season. The concentrations and daily cycles of total primary organic matter (TPOM) are generally better reproduced by the models since they used the same anthropogenic emissions. However, the combination of emissions and model formulation leads to overestimate TPOM concentrations in 2009 for most of the models. All models capture relatively well the SOA daily cycles at rural stations mainly due to the spatial resolution used in the simulations. For the investigated carbonaceous aerosol compounds, the differences between the concentrations simulated by different models are lower than the differences between the concentrations simulated with a model for different seasons. © 2019 The Authors
  • Item
    Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018
    (Katlenburg-Lindau : EGU, 2020) Sun, Jia; Birmili, Wolfram; Hermann, Markus; Tuch, Thomas; Weinhold, Kay; Merkel, Maik; Rasch, Fabian; Müller, Thomas; Schladitz, Alexander; Bastian, Susanne; Löschau, Gunter; Cyrys, Josef; Gu, Jianwei; Flentje, Harald; Briel, Björn; Asbach, Christoph; Kaminski, Heinz; Ries, Ludwig; Sohmer, Ralf; Gerwig, Holger; Wirtz, Klaus; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ma, Nan; Wiedensohler, Alfred
    Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009-2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between-13.1% and-1.7% per year. The slopes of the PNCs vary from-17.2% to-1.7 %,-7.8% to-1.1 %, and-11.1% to-1.2% per year for 10-30, 30-200, and 200-800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies. © 2020 Author(s).