Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Complex network approach for detecting tropical cyclones

2021, Gupta, Shraddha, Boers, Niklas, Pappenberger, Florian, Kurths, Jürgen

Tropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth’s surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Niño Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of the network topology over time scales relevant to TCs allows us to obtain crucial insights into the effects of TCs on the spatial connectivity structure of sea-level pressure fields.

Loading...
Thumbnail Image
Item

Complex systems approaches for Earth system data analysis

2021, Boers, Niklas, Kurths, Jürgen, Marwan, Norbert

Complex systems can, to a first approximation, be characterized by the fact that their dynamics emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the individual constituents of the system. This property of complex systems can be identified in virtually all natural systems surrounding us, but also in many social, economic, and technological systems. The defining characteristics of complex systems imply that their dynamics can often only be captured from the analysis of simulated or observed data. Here, we summarize recent advances in nonlinear data analysis of both simulated and real-world complex systems, with a focus on recurrence analysis for the investigation of individual or small sets of time series, and complex networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the recent success of these two key concepts of complexity science with an emphasis on applications for the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present several prominent examples where challenging problems in Earth system and climate science have been successfully addressed using recurrence analysis and complex networks. We outline several open questions for future lines of research in the direction of data-based complex system analysis, again with a focus on applications in the Earth sciences, and suggest possible combinations with suitable machine learning approaches. Beyond Earth system analysis, these methods have proven valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or engineering.

Loading...
Thumbnail Image
Item

Bilateral Trade Agreements and the Interconnectedness of Global Trade

2018, Maluck, Julian, Glanemann, Nicole, Donner, Reik V.

Over the last decades, bilateral trade agreements (BTAs) have increased considerably in number and economic relevance. Notably, such agreements substantially affect global trade, since the reorganization of flows of goods and services has prominent impacts on the contracting countries' economies, but also on other parties that are (directly or indirectly) engaged in trade with these countries. Here, we empirically study the effect of BTAs on the input-output linkages between the contractual parties' national economic sectors by defining a new measure of Trade Interconnectedness (TI), which describes the relative importance of direct and indirect production linkages between the two countries in the international trade network. By analyzing its time evolution for each pair of trade agreement partners, we demonstrate that while most BTAs are succeeded by an increase in TI between the contractors, there are some notable exceptions. In particular, comparing the trade profiles of China and the United States (US), we find indications that both countries have been pursuing fundamentally different objectives and strategies related to the negotiation of BTAs.

Loading...
Thumbnail Image
Item

How Price-Based Frequency Regulation Impacts Stability in Power Grids: A Complex Network Perspective

2020, Ji, Peng, Zhu, Lipeng, Lu, Chao, Lin, Wei, Kurths, Jürgen

With the deregulation of modern power grids, electricity markets are playing a more and more important role in power grid operation and control. However, it is still questionable how the real-time electricity price-based operation affects power grid stability. From a complex network perspective, here we investigate the dynamical interactions between price-based frequency regulations and physical networks, which results in an interesting finding that a local minimum of network stability occurs when the response strength of generators/consumers to the varying price increases. A case study of the real world-based China Southern Power Grid demonstrates the finding and exhibits a feasible approach to network stability enhancement in smart grids. This also provides guidance for potential upgrade and expansion of the current power grids in a cleaner and safer way. © 2020 Peng Ji et al.

Loading...
Thumbnail Image
Item

Prevention and trust evaluation scheme based on interpersonal relationships for large-scale peer-to-peer networks

2014, Li, L., Kurths, J., Yang, Y., Liu, G.

In recent years, the complex network as the frontier of complex system has received more and more attention. Peer-to-peer (P2P) networks with openness, anonymity, and dynamic nature are vulnerable and are easily attacked by peers with malicious behaviors. Building trusted relationships among peers in a large-scale distributed P2P system is a fundamental and challenging research topic. Based on interpersonal relationships among peers of large-scale P2P networks, we present prevention and trust evaluation scheme, called IRTrust. The framework incorporates a strategy of identity authentication and a global trust of peers to improve the ability of resisting the malicious behaviors. It uses the quality of service (QoS), quality of recommendation (QoR), and comprehensive risk factor to evaluate the trustworthiness of a peer, which is applicable for large-scale unstructured P2P networks. The proposed IRTrust can defend against several kinds of malicious attacks, such as simple malicious attacks, collusive attacks, strategic attacks, and sybil attacks. Our simulation results show that the proposed scheme provides greater accuracy and stronger resistance compared with existing global trust schemes. The proposed scheme has potential application in secure P2P network coding.

Loading...
Thumbnail Image
Item

An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures

2020, Ciemer, Catrin, Rehm, Lars, Kurths, Jürgen, Donner, Reik V., Winkelmann, Ricarda, Boers, Niklas

Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.

Loading...
Thumbnail Image
Item

Order patterns networks (orpan) - A method to estimate time-evolving functional connectivity from multivariate time series

2012, Schinkel, S., Zamora-López, G., Dimigen, O., Sommer, W., Kurths, J.

Complex networks provide an excellent framework for studying the function of the human brain activity. Yet estimating functional networks from measured signals is not trivial, especially if the data is non-stationary and noisy as it is often the case with physiological recordings. In this article we propose a method that uses the local rank structure of the data to define functional links in terms of identical rank structures. The method yields temporal sequences of networks which permits to trace the evolution of the functional connectivity during the time course of the observation. We demonstrate the potentials of this approach with model data as well as with experimental data from an electrophysiological study on language processing.

Loading...
Thumbnail Image
Item

Recurrence networks-a novel paradigm for nonlinear time series analysis

2010, Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J.

This paper presents a new approach for analysing the structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network, which links different points in time if the considered states are closely neighboured in phase space. In comparison with similar network-based techniques the new approach has important conceptual advantages, and can be considered as a unifying framework for transforming time series into complex networks that also includes other existing methods as special cases. It has been demonstrated here that there are fundamental relationships between many topological properties of recurrence networks and different nontrivial statistical properties of the phase space density of the underlying dynamical system. Hence, this novel interpretation of the recurrence matrix yields new quantitative characteristics (such as average path length, clustering coefficient, or centrality measures of the recurrence network) related to the dynamical complexity of a time series, most of which are not yet provided by other existing methods of nonlinear time series analysis. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

A climate network perspective on the intertropical convergence zone

2021, Wolf, Frederik, Voigt, Aiko, Donner, Reik V.

The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change. Here we employ complex network approaches, which extract spatiotemporal variability patterns from climate data, to better understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose, we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the spatial correlation patterns of monthly surface temperature anomalies and study the zonal-mean patterns of different topological and spatial network characteristics. Specifically, we cluster the GCMs by means of the distributions of their zonal network measures utilizing hierarchical clustering. We find that in the control simulation, the distributions of the zonal network measures are able to pick up model differences in the tropical sea surface temperature (SST) contrast, the ITCZ position, and the strength of the Southern Hemisphere Hadley cell. Although we do not find evidence for consistent modifications in the network structure tracing the response of the ITCZ to global warming in the considered model ensemble, our analysis demonstrates that coherent variations of the global SST field are linked to ITCZ dynamics. This suggests that climate networks can provide a new perspective on ITCZ dynamics and model differences therein.

Loading...
Thumbnail Image
Item

IEEE Access Special Section Editorial: Recent Advances on Hybrid Complex Networks: Analysis and Control

2021, Lu, Jianquan, Ho, Daniel W. C., Huang, Tingwen, Kurths, Jurgen, Trajkovic, Ljiljana

Complex networks typically involve multiple disciplines due to network dynamics and their statistical nature. When modeling practical networks, both impulsive effects and logical dynamics have recently attracted increasing attention. Hence, it is of interest and importance to consider hybrid complex networks with impulsive effects and logical dynamics. Relevant research is prevalent in cells, ecology, social systems, and communication engineering. In hybrid complex networks, numerous nodes are coupled through networks and their properties usually lead to complex dynamic behaviors, including discrete and continuous dynamics with finite values of time and state space. Generally, continuous and discrete sections of the systems are described by differential and difference equations, respectively. Logical networks are used to model the systems where time and state space take finite values. Although interesting results have been reported regarding hybrid complex networks, the analysis methods and relevant results could be further improved with respect to conservative impulsive delay inequalities and reproducibility of corresponding stability or synchronization criteria. Therefore, it is necessary to devise effective approaches to improve the analysis method and results dealing with hybrid complex networks.