Search Results

Now showing 1 - 3 of 3
  • Item
    Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading
    (Washington, DC : Soc., 2020) Schroepfer, Michaela; Junghans, Frauke; Voigt, Diana; Meyer, Michael; Breier, Anette; Schulze-Tanzil, Gundula; Prade, Ina
    For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein-but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility. Copyright © 2020 American Chemical Society.
  • Item
    Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles
    (Washington, DC : Soc., 2020) Sheng, Wenbo; Li, Wei; Tan, Deming; Zhang, Panpan; Zhang, En; Sheremet, Evgeniya; Schmidt, Bernhard V.K.J.; Feng, Xinliang; Rodriguez, Raul D.; Jordan, Rainer; Amin, Ihsan
    Graphitic carbon nitride (gCN) has a broad range of promising applications, from energy harvesting and storage to sensing. However, most of the applications are still restricted due to gCN poor dispersibility and limited functional groups. Herein, a direct photografting of gCN using various polymer brushes with tailorable functionalities via UV photopolymerization at ambient conditions is demonstrated. The systematic study of polymer brush-functionalized gCN reveals that the polymerization did not alter the inherent structure of gCN. Compared to the pristine gCN, the gCN-polymer composites show good dispersibility in various solvents such as water, ethanol, and tetrahydrofuran (THF). Patterned polymer brushes on gCN can be realized by employing photomask and microcontact printing technology. The polymer brushes with incorporated silver nanoparticles (AgNPs) on gCN can act as a multifunctional recyclable active sensing layer for surface-enhanced Raman spectroscopy (SERS) detection and photocatalysis. This multifunctionality is shown in consecutive cycles of SERS and photocatalytic degradation processes that can be applied to in situ monitor pollutants, such as dyes or pharmaceutical waste, with high chemical sensitivity as well as to water remediation. This dual functionality provides a significant advantage to our AgNPs/polymer-gCN with regard to state-of-the-art systems reported so far that only allow SERS pollutant detection but not their decomposition. These results may provide a new methodology for the covalent functionalization of gCN and may enable new applications in the field of catalysis, biosensors, and, most interestingly, environmental remediation. Copyright © 2020 American Chemical Society.
  • Item
    Revealing Fast Proton Transport in Condensed Matter by Means of Density Scaling Concept
    (Washington, DC : Soc., 2020) Wojnarowska, Zaneta; Musiał, Małgorzata; Cheng, Shinian; Gapinski, Jacek; Patkowski, Adam; Pionteck, Jürgen; Paluch, Marian
    Herein, we investigate the charge transport and structural dynamics in the supercooled and glassy state of protic ionic material with an efficient interionic Grotthuss mechanism. We found that superprotonic properties of studied acebutolol hydrochloride (ACB-HCl) depend on thermodynamic conditions with the most favorable regions being close to the glass-transition temperature (Tg) and glass-transition pressure (Pg). To quantify the contribution of fast proton hopping to overall charge transport over a broad T–P space, we employed the density scaling concept, one of the most important experimental findings in the field of condensed matter physics. We found that isothermal and isobaric dc-conductivity (σdc) and dynamic light scattering (τα) data of ACB-HCl plotted as a function of (TVγ)−1 satisfy the thermodynamic scaling criterion with the ratio γσ/γα appearing as a new measure of fast charge transport in protic ionic glass-formers in the T–P plane. Such a universal factor becomes an alternative to the well-known Walden rule being limited to ambient pressure conditions.