Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Switchable plasmonic routers controlled by external magnetic fields by using magneto-plasmonic waveguides

2018, Ho, Kum-Song, Im, Song-Jin, Pae, Ji-Song, Ri, Chol-Song, Han, Yong-Ha, Herrmann, Joachim

We analytically and numerically investigate magneto-plasmons in metal films surrounded by a ferromagnetic dielectric. In such waveguide using a metal film with a thickness exceeding the Skin depth, an external magnetic field in the transverse direction can induce a significant spatial asymmetry of mode distribution. Superposition of the odd and the even asymmetric modes over a distance leads to a concentration of the energy on one interface which is switched to the other interface by the magnetic field reversal. The requested magnitude of magnetization is exponentially reduced with the increase of the metal film thickness. Based on this phenomenon, we propose a waveguide-integrated magnetically controlled switchable plasmonic routers with 99-%-high contrast within the optical bandwidth of tens of THz. This configuration can also operate as a magneto-plasmonic modulator.

Loading...
Thumbnail Image
Item

Role of hole confinement in the recombination properties of InGaN quantum structures

2019, Anikeeva, M., Albrecht, M., Mahler, F., Tomm, J. W., Lymperakis, L., Chèze, C., Calarco, R., Neugebauer, J., Schulz, T.

We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as “s-shape”. We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions.