Search Results

Now showing 1 - 10 of 29
Loading...
Thumbnail Image
Item

GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

2016, Lécz, Z., Konoplev, I.V., Seryi, A., Andreev, A.

This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

Loading...
Thumbnail Image
Item

Switchable plasmonic routers controlled by external magnetic fields by using magneto-plasmonic waveguides

2018, Ho, Kum-Song, Im, Song-Jin, Pae, Ji-Song, Ri, Chol-Song, Han, Yong-Ha, Herrmann, Joachim

We analytically and numerically investigate magneto-plasmons in metal films surrounded by a ferromagnetic dielectric. In such waveguide using a metal film with a thickness exceeding the Skin depth, an external magnetic field in the transverse direction can induce a significant spatial asymmetry of mode distribution. Superposition of the odd and the even asymmetric modes over a distance leads to a concentration of the energy on one interface which is switched to the other interface by the magnetic field reversal. The requested magnitude of magnetization is exponentially reduced with the increase of the metal film thickness. Based on this phenomenon, we propose a waveguide-integrated magnetically controlled switchable plasmonic routers with 99-%-high contrast within the optical bandwidth of tens of THz. This configuration can also operate as a magneto-plasmonic modulator.

Loading...
Thumbnail Image
Item

Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: A shared electromagnetic origin

2017, Rudenko, Anton, Colombier, Jean-Philippe, Höhm, Sandra, Rosenfeld, Arkadi, Krüger, Jörg, Bonse, Jörn, Itina, Tatiana E.

Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements.

Loading...
Thumbnail Image
Item

Prospects of target nanostructuring for laser proton acceleration

2017, Lübcke, Andrea, Andreev, Alexander A., Höhm, Sandra, Grunwald, Ruediger, Ehrentraut, Lutz, Schnürer, Matthias

In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.

Loading...
Thumbnail Image
Item

Strong-field ionization of clusters using two-cycle pulses at 1.8 μm

2016, Schütte, Bernd, Ye, Peng, Patchkovskii, Serguei, Austin, Dane R., Brahms, Christian, Strüber, Christian, Witting, Tobias, Ivanov, Misha Yu, Tisch, John W. G., Marangos, Jon P.

The interaction of intense laser pulses with nanoscale particles leads to the production of high-energy electrons, ions, neutral atoms, neutrons and photons. Up to now, investigations have focused on near-infrared to X-ray laser pulses consisting of many optical cycles. Here we study strong-field ionization of rare-gas clusters (103 to 105 atoms) using two-cycle 1.8 μm laser pulses to access a new interaction regime in the limit where the electron dynamics are dominated by the laser field and the cluster atoms do not have time to move significantly. The emission of fast electrons with kinetic energies exceeding 3 keV is observed using laser pulses with a wavelength of 1.8 μm and an intensity of 1 × 1015 W/cm2, whereas only electrons below 500 eV are observed at 800 nm using a similar intensity and pulse duration. Fast electrons are preferentially emitted along the laser polarization direction, showing that they are driven out from the cluster by the laser field. In addition to direct electron emission, an electron rescattering plateau is observed. Scaling to even longer wavelengths is expected to result in a highly directional current of energetic electrons on a few-femtosecond timescale.

Loading...
Thumbnail Image
Item

Cationic double K-hole pre-edge states of CS2 and SF6

2017, Feifel, R., Eland, J.H.D., Carniato, S., Selles, P., Püttner, R., Koulentianos, D., Marchenko, T., Journel, L., Guillemin, R., Goldsztejn, G., Travnikova, O., Ismail, I., Miranda, B. Cunha de, Lago, A.F., Céolin, D., Lablanquie, P., Penent, F., Piancastelli, M.N., Simon, M.

Recent advances in X-ray instrumentation have made it possible to measure the spectra of an essentially unexplored class of electronic states associated with double inner-shell vacancies. Using the technique of single electron spectroscopy, spectra of states in CS2 and SF6 with a double hole in the K-shell and one electron exited to a normally unoccupied orbital have been obtained. The spectra are interpreted with the aid of a high-level theoretical model giving excellent agreement with the experiment. The results shed new light on the important distinction between direct and conjugate shake-up in a molecular context. In particular, systematic similarities and differences between pre-edge states near single core holes investigated in X-ray absorption spectra and the corresponding states near double core holes studied here are brought out.

Loading...
Thumbnail Image
Item

Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies

2017, Zürch, M., Jung, R., Späth, C., Tümmler, J., Guggenmos, A., Attwood, D., Kleineberg, U., Stiel, H., Spielmann, C.

Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.

Loading...
Thumbnail Image
Item

Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

2017, Oelze, Tim, Schütte, Bernd, Müller, Maria, Müller, Jan P., Wieland, Marek, Frühling, Ulrike, Drescher, Markus, Al-Shemmary, Alaa, Golz, Torsten, Stojanovic, Nikola, Krikunova, Maria

Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.

Loading...
Thumbnail Image
Item

Advanced-Retarded Differential Equations in Quantum Photonic Systems

2017, Alvarez-Rodriguez, Unai, Perez-Leija, Armando, Egusquiza, Iñigo L., Gräfe, Markus, Sanz, Mikel, Lamata, Lucas, Szameit, Alexander, Solano, Enrique

We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip.

Loading...
Thumbnail Image
Item

Population density gratings induced by few-cycle optical pulses in a resonant medium

2017, Arkhipov, R.M., Pakhomov, A.V., Arkhipov, M.V., Babushkin, I., Demircan, A., Morgner, U., Rosanov, N.N.

Creation, erasing and ultrafast control of population density gratings using few-cycle optical pulses coherently interacting with resonant medium is discussed. In contrast to the commonly used schemes, here the pulses do not need to overlap in the medium, interaction between the pulses is mediated by excitation of polarization waves. We investigate the details of the dynamics arising in such ultrashort pulse scheme and develop an analytical theory demonstrating the importance of the phase memory effects in the dynamics.